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/ To appear in Proc. of the 27th Annual Asilomar Conference on Signals Systems and Computers, Nov. 1{3, 1993 /Orthogonal Matching Pursuit:Recursive Function Approximation with Applications to WaveletDecompositionY. C. Pati R. Rezaiifar and P. S. KrishnaprasadInformation Systems Laboratory Institute for Systems ResearchDept. of Electrical Engineering Dept. of Electrical EngineeringStanford University, Stanford, CA 94305 University of Maryland, College Park, MD 20742AbstractIn this paper we describe a recursive algorithm tocompute representations of functions with respect tononorthogonal and possibly overcomplete dictionariesof elementary building blocks e.g. a�ne (wavelet)frames. We propose a modi�cation to the MatchingPursuit algorithm of Mallat and Zhang (1992) thatmaintains full backward orthogonality of the residual(error) at every step and thereby leads to improvedconvergence. We refer to this modi�ed algorithm asOrthogonal Matching Pursuit (OMP). It is shown thatall additional computation required for the OMP al-gorithm may be performed recursively.1 Introduction and BackgroundGiven a collection of vectors D = fxig in a Hilbertspace H, let us de�neV = Spanfxng; and W = V? (in H):We shall refer to D as a dictionary, and will assumethe vectors xn, are normalized (kxnk = 1). In [3] Mal-lat and Zhang proposed an iterative algorithm thatthey termed Matching Pursuit (MP) to construct rep-resentations of the formPV f =Xn anxn; (1)where PV is the orthogonal projection operator ontoV . Each iteration of the MP algorithm results in anintermediate representation of the formf = kXi=1 aixni +Rkf = fk +Rkf;

where fk is the current approximation, and Rkf thecurrent residual (error). Using initial values of R0f =f , f0 = 0, and k = 1, the MP algorithm is comprisedof the following steps,(I) Compute the inner-products fhRkf; xnign.(II) Find nk+1 such that��
Rkf; xnk+1��� � � supj jhRkf; xjij ;where 0 < � � 1.(III) Set, fk+1 = fk + 
Rkf; xnk+1�xnk+1Rk+1f = Rkf � 
Rkf; xnk+1�xnk+1(IV) Increment k, (k  k+1), and repeat steps (I){(IV) until some convergence criterion has beensatis�ed.The proof of convergence [3] of MP relies essentially onthe fact that 
Rk+1f; xnk+1� = 0. This orthogonalityof the residual to the last vector selected leads to thefollowing \energy conservation" equation.kRkfk2 = kRk+1fk2 + ��
Rkf; xnk+1���2 : (2)It has been noted that the MP algorithm may be de-rived as a special case of a technique known as Pro-jection Pursuit (c.f. [2]) in the statistics literature.A shortcoming of the Matching Pursuit algorithmin its originally proposed form is that although asymp-totic convergence is guaranteed, the resulting approxi-mation after any �nite number of iterations will in gen-eral be suboptimal in the following sense. Let N <1,1



be the number of MP iterations performed. Thus wehave fN = N�1Xk=0 
Rkf; xnk+1�xnk+1 :De�ne VN = Spanfxn1; : : : ; xnNg. We shall referto fN as an optimal N-term approximation if fN =PVNf , i.e. fN is the best approximation we canconstruct using the selected subset fxn1; : : : ; xnNg ofthe dictionary D. (Note that this notion of optimal-ity does not involve the problem of selecting an \op-timal" N-element subset of the dictionary.) In thissense, fN is an optimal N-term approximation, if andonly if RNf 2 V?N . As MP only guarantees thatRNf ? xnN , fN as generated by MP will in generalbe suboptimal. The di�culty with such suboptimalityis easily illustrated by a simple example in IR2. Letx1, and x2 be two vectors in IR2, and take f 2 IR2, asshown in Figure 1(a). Figure 1(b) is a plot of kRkfk2(a) x 1
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orFigure 1: Matching pursuit example in IR2: (a) Dic-tionary D = fx1; x2g and a vector f 2 IR2versus k. Hence although asymptotic convergence isguaranteed, after any �nite number of steps, the errormay still be quite large. 1In this paper we propose a re�nement of the Match-ing Pursuit (MP) algorithm that we refer to as Or-thogonal Matching Pursuit (OMP). For nonorthogo-nal dictionaries, OMP will in general converge fasterthan MP. For any �nite size dictionary of N elements,OMP converges to the projection onto the span of thedictionary elements in no more than N steps. Fur-thermore after any �nite number of iterations, OMP1A simlar di�culty with the Projection Pursuit algorithmwas noted by Donoho et.al. [1] who suggested that back�ttingmay be used to improve the convergence of PPR. Although thetechnique is not fully described in [1] it appears that it is in thesame spirit as the technique we present here.

gives the optimal approximation with respect to theselected subset of the dictionary. This is achieved byensuring full backward orthogonality of the error i.e.at each iteration Rkf 2 V?k . For the example in Fig-ure 1, OMP ensures convergence in exactly two itera-tions. It is also shown that the additional computationrequired for OMP, takes a simple recursive form.We demonstrate the utility of OMP by exampleof applications to representing functions with respectto time-frequency localized a�ne wavelet dictionaries.We also compare the performance of OMP with thatof MP on two numerical examples.2 Orthogonal Matching PursuitAssume we have the following kth-order model forf 2 H,f = kXn=1aknxn+Rkf; with hRkf; xni = 0; n = 1; : : :k:(3)The superscript k, in the coe�cients akn, show the de-pendence of these coe�cients on the model-order. Wewould like to update this kth-order model to a modelof order k + 1,f = k+1Xn=1 ak+1n xn +Rk+1f; with hRk+1f; xni = 0,n = 1; : : :k + 1. (4)Since elements of the dictionary D are not requiredto be orthogonal, to perform such an update, we alsorequire an auxiliary model for the dependence of xk+1on the previous xn's (n = 1; : : :k). Let,xk+1 = kXn=1 bknxn+k; with hk; xni = 0; n = 1; : : :k:(5)Thus Pkn=1 bknxn = PVkxk+1, and k = PV?k xk+1,is the component of xk+1 which is unexplained byfx1; : : : ; xkg.Using the auxiliary model (5), it may be shown thatthe correct update from the kth-order model to themodel of order k + 1, is given byak+1n = akn � �kbkn; n = 1; : : : ; k (6)and ak+1k+1 = �k;where �k = hRkf; xk+1ihk; xk+1i = hRkf; xk+1ikkk2= hRkf; xk+1ikxk+1k2 �Pkn=1 bkn hxn; xk+1i :2



It also follows that the residual Rk+1f satis�es,Rkf = Rk+1f + �kk; andkRkfk2 = kRk+1fk2 + jhRkf; xk+1ij2kkk2 : (7)2.1 The OMP AlgorithmThe results of the previous section may be used toconstruct the following algorithm that we will refer toas Orthogonal Matching Pursuit (OMP).Initialization:f0 = 0; R0f = f; D0 = f gx0 = 0; a00 = 0; k = 0(I) Compute fhRkf; xni ;xn 2 D nDkg.(II) Find xnk+1 2 D nDk such that��
Rkf; xnk+1��� � � supj jhRkf; xjij ; 0 < � � 1:(III) If ��
Rkf; xnk+1��� < �, (� > 0) then stop.(IV) Reorder the dictionary D, by applying the per-mutation k + 1$ nk+1.(V) Compute �bkn	kn=1, such that,xk+1 =Pkn=1 bknxn + kand hk; xni = 0; n = 1; : : : ; k:(VI) Set, ak+1k+1 = �k = kkk�2 hRkf; xk+1i,ak+1n = akn � �kbkn; n = 1; : : : ; k;and update the model,fk+1 = k+1Xn=1ak+1n xnRk+1f = f � fk+1Dk+1 = Dk[ fxk+1g:(VII) Set k  k + 1, and repeat (I){(VII).2.2 Some Properties of OMPAs in the case of MP, convergence of OMP relieson an energy conservation equation that now takesthe form (7). The following theorem summarizes theconvergence properties of OMP.

Theorem 2.1 For f 2 H, let Rkf be the residualsgenerated by OMP. Then(i) limk!1kRkf � PV ?fk = 0:(ii) fN = PVNf; N = 0; 1; 2; : : :.Proof: The proof of convergence parallels the proofof Theorem 1 in [3]. The proof of the the second prop-erty follows immediately from the orthogonality con-ditions of Equation (3).Remarks:The key di�erence between MP and OMP lies in Prop-erty (iii) of Theorem 2.1. Property (iii) implies thatat the N th step we have the best approximation wecan get using the N vectors we have selected fromthe dictionary. Therefore in the case of �nite dictio-naries of size M , OMP converges in no more than Miterations to the projection of f onto the span of thedictionary elements. As mentioned earlier, MatchingPursuit does not possess this property.2.3 Some Computational DetailsAs in the case of MP, the inner productsfhRkf; xjig may be computed recursively. For OMPwe may express these recursions implicitly in the for-mulahRkf; xji = hf � fk; xji = hf; xji � kXn=1akn hxn; xji :(8)The only additional computation required for OMP,arises in determining the bkn's of the auxiliary model(5). To compute the bkn's we rewrite the normal equa-tions associated with (5) as a system of k linear equa-tions, vk = Akbk; (9)wherevk = [hxk+1; x1i ; hxk+1; x2i : : : ; hxk+1; xki]Tbk = �bk1 ; bk2; : : : ; bkk�Tand Ak = 26664 hx1; x1i hx2; x1i � � � hxk; x1ihx1; x2i hx2; x2i � � � hxk; x2i... ... . . . ...hx1; xki hx2; xki � � � hxk; xki 37775 :3



Note that the positive constant � used in Step (III)of OMP guarantees nonsingularity of the matrix Ak,hence we may writebk = A�1k vk: (10)However, since Ak+1 may be written asAk+1 = � Ak vkv�k 1 � ; (11)(where � denotes conjugate transpose) it may beshown using the block matrix inversion formula thatA�1k+1 = � A�1k + �bkb�k ��bk��b�k � � ; (12)where � = 1=(1� v�kbk). Hence A�1k+1, and thereforebk+1, may be computed recursively using A�1k , andbk from the previous step.3 ExamplesIn the following examples we consider represen-tations with repect to an a�ne wavelet frame con-structed from dilates and translates of the secondderivate of a Gaussian, i.e. D = f m;n; m; n 2 ZZgwhere,  m;n(x) = 2m=2 (2mx� n);and the analyzing wavelet  is given by, (x) = � 43p��1=2 �x2 � 1� e�x2=2:Note that for wavelet dictionaries, the initial set of in-ner products fhf;  m;nig, are readily computed by oneconvolution followed by sampling at each dilation levelm. The dictionary used in these examples consists ofa total of 351 vectors.In our �rst example, both OMP and MP were ap-plied to the signal shown in Figure 2(a). We see fromFigure 2(b) that OMP clearly converges in far feweriterations than MP. The squared magnitude of the co-e�cients ak, of the resulting representation is shown inFigure 3. We could also compare the two algorithmson the basis of required computational e�ort to com-pute representations of signals to within a prespeci�ederror. However such a comparison can only be madefor a given signal and dictionary, as the number of it-erations required for each algorithm depends on boththe signal and the dictionary. For example, for thesignal of Example I, we see from Figure 4 that it is 3
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xFigure 3: Distribution of coe�cients obtained by ap-plying OMP in Example I. Shading is proportional tosquared magnitude of the coe�cients ak, with darkcolors indicating large magnitudes.to 8 times more expensive to achieve a prespeci�ed er-ror using OMP even though OMP converges in feweriterations. On the other hand for the signal shownin Figure 5, which lies in the span of three dictionaryvectors, it is approximately 20 times more expensiveto apply MP. In this case OMP converges in exactlythree iterations.4 Summary and ConclusionsIn this paper we have described a recursive al-gorithm, which we refer to as Orthogonal MatchingPursuit (OMP), to compute representations of signalswith respect to arbitrary dictionaries of elementaryfunctions. The algorithm we have described is a mod-i�cation of the Matching Pursuit (MP) algorithm ofMallat and Zhang [3] that improves convergence us-4



-2.5 -2 -1.5 -1 -0.5
10

3

10
4

10
5

10
6

10
7

Log of Normalized L2 Error

C
os

t (
F

LO
P

S
)

--  MP
__ OMPFigure 4: Computational cost (FLOPS) versus ap-proximation error for both OMP (solid line) and MP(dashed line) applied to the signal in Example I.(a)

-250 -200 -150 -100 -50 0 50 100 150 200 250
-0.2

0

0.2

0.4

(b)
0 10 20 30 40 50 60 70 80

10
-15

10
-10

10
-5

10
0

Iteration Number

N
or

m
al

iz
ed

 L
2 

E
rr

or

--- MP

___ OMPFigure 5: Example II: (a) Original signal f , (b)Squared L2 norm of residual Rkf versus iterationnumber k, for both OMP (solid line) and MP (dashedline).ing an additional orthogonalization step. The mainbene�t of OMP over MP is the fact that it is guar-anteed to converge in a �nite number of steps for a�nite dictionary. We also demonstrated that all addi-tional computation that is required for OMP may beperformed recursively.The two algorithms, MP and OMP, were comparedon two simple examples of decomposition with respectto a wavelet dictionary. It was noted that althoughOMP converges in fewer iterations than MP, the com-putational e�ort required for each algorithm dependson both the class of signals and choice of dictionary.Although we do not provide a rigorous argument here,it seems reasonable to conjecture that OMP will becomputationally cheaper than MP for very redundantdictionaries, as knowledge of the redundancy is ex-ploited in OMP to reduce the error as much as possible
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