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On the Difference Between Orthogonal Matching
Pursuit and Orthogonal Least Squares
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Abstract— Greedy algorithms are often used to solve under- Euclidean distance) tox using linear combinations of the
determined inverse problems when the solution is constraied to  columns iN®x.
be sparse, i.e. the solution is only expected to have a refatly 1o gierence in the algorithms is in how they select the
small number of non-zero elements. Two different algorithns . - . .
have been suggested to solve such problems in the signal pro"€W index to be added b in each iteration.
cessing and control community, orthogonal Matching Pursutiand
orthogonal Least Squares respectively. In the current liteature, L .
there exist a great deal of confusion between the two strates. B. Confusion in the literature
Matohing Pursuit and has repeatedly been “re-discovered- s _ Before discussing the aigoritms in more details we here
several papers. In this communication we try to pull togethe review the Ilteratu_re on thg SUbJe(_:t' The algorlt_hm We_call
some of the literature and clarify the difference between te Orthogonal Matching Pursuit was first proposed in the signal

methods. processing literature by Davis, Mallat and Zhang in [1] and
Index Terms— Sparse signal approximation algorithms, or- at the same time appeared in a paper by Pati, Rezaiifar
thogonal Matching Pursuit, orthogonal Least Squares and Rrishnaprasad [2]. The algorithm is discussed in some
detail in the book [3], which greatly contributed to its camt
popularity.

| INTRODUCTION A trail of confusion can, however, be traced back to [1],

In this communication, we discuss two greedy strategies thghere the authors stat@his type of algorithm was first intro-
were developed to solve the following problem. Given a vectduced for control applications [4] However, the algorithm
x € RN= and a matrix® € RY=*"=_find a vectors such that proposed by Chen, Billinges and Luo in [4], which is the
the squared error is small, whisehas only a small number of algorithm we call orthogonal Least Squares, differs from®M
non-zero elements. For the discussion here, we use the teggnwe will show below.
algorithm to mean any computational procedure that gives aOLS has not played a prominent role in the signal pro-
particular result, i.e. we here discuss two different atbans, cessing literature, which led to the repeated discovery of
which can be implemented using different computationgiste this algorithm by a range of authors over the years. For

example, the optimized orthogonal Matching Pursuit atbaoni

A. Notation and theoretical overview by Rebollo-Neira and Lowe [5] as well as the algorithm
proposed by Natarajan [6] are incarnations of OLS. The paper
“A fast orthogonal matching pursuit algorithm” by Gharavi-
Alkhansari and Huang [7] has not helped the matter, as the
discussed algorithm is not the OMP algorithm of [2] and [1]
as the name of the paper suggests, but is in fact the OLS
algorithm of [4].

Let ' be the index set of non-zero elementspfe. I'" =
{i: 51 # 0}, wheres; is thei" element in the vectos. We
use this set to index sub-matrices®fthat only contain those
columns with indices if'™", i.e ®p» is a sub-matrix of®. We
use the same notation for sub-vectors, $;e. is a sub-vector

of s. The individual columns ofp will be the vectorsp;. We OLS type algorithms have also appeared in the statistics

assume throughout thijts;|| = 1. literature, for example the forward selection algorithrh [

\(/jV|t(P)1 tthh|s notla'lt_|0n, tOSrthogonaIOhﬁz;tch;)n%hEursu|;_I((’)I\éllff¢t01 has been suggested for the subset selection problem in
an rthogonal Least Squares ( ), both “greedily” bui gression. This method is also sometimes known as forward

updthtg serﬁ; ’ba(zgmlg a ilhngle e'emef.“ mbeeac_h |t§rat|on. Aftegelection, a name that is however normally used for a method
updatingl =, both aigorithms approximate using: that also allows elements to be deleted [8]. Again, OLS

X A K Brasp, = (I,an,;n& (1) and OMP are not commonly distinguished, which has led
. _ many prominent authors to make statements of the form
where @, is the More-Penrose pseudo inverse ®f-. “ QOrthogonal Matching Pursuit, (also called (...) stepwise

Therefore,<I>Fn‘I>}nx is the closest approximation (in theregression in other fields), [11].
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the selection procedure, which it has inherited from Matghi I1l. ORTHOGONAL LEAST SQUARES

Pursuit. The selection step used in OLS differs from the one used in
In each iteration, orthogonal Matching Pursuit calculatesyatching Pursuit and OMP in that it selects the veetgrthat
new signal approximatior™. The approximation error™ = il lead to the minimum residual error after orthogonaiisa.
x — X" is then used in the next iteration to determine whicfj js important to realise that the OMP selection procedure
new element is to be selected. In particular, the selecBondpes not select that element that, after orthogonal piioject
based on the inner products between the curent residual of the signal onto the selected elements, minimise the uakid
and the colum vectors; of ®. Let these inner products be norm (see for example the discussion in [5]). Though, once
n T n the elements are selected, both OMP and OLS minimise the
ai =@ 2 i ;
residualgiven the selected elements

The new element is then selected for which the magnitude ofUsing this selection procedure, we can write the OLS

a is largest, i.e. algorithm as:
o Initialise:r’ = x, s =0,T% =0
Iy e = arg; max |ag' 3) e for n = 1;n:=n+ 1 till stopping criterion is met

— mas = arg; Milpa.rr_pa—1; [|X — <I>p?‘1>1t?x|\2

—Im=r""1y Ymax
et = p» U anam' (4) _ S?n — @an
—r"=x— Ps”

Again, faster implementations are based on QR factorisatio

so that

OMP can therefore be summarised as:

« Initialise: r’ = x, s =0, o =0 [4], however, one now uses the Modified Gram-Schmidt pro-
o forn =1;n:=n+1till stopping criterion is met cedure to calculate the QR factorisation, i.e. in each titena
- a;=¢]r" ! forallig¢g ! the dictionary & is split into two parts,®r» and ®,»,
— imaz = arg; max |oy| where the set\” now contains all those indices not I,
- I = F"fl Uimaz The Modified Gram-Schmidt procedure [13] then iteratively
— S{n = ‘1>1pnx updates a QR factorisation 6P gammar = Qr-Rr» as
- =z ®s" with OMP, however, at the same time, it keeps a modified

The algorithm as described here does not represent a us@oley of @5, say @5, whose columns are the columns of
strategy in many applications, as we have here written te\» that have been made orthogonal to all elementQin
algorithm in a form that requires the solution to an inversand, crucially, that have beaa-normalised OLS can then be
problem in each iteration. The most efficient implementatiovritten as:
of the strategy, which, however, requires some additionall) Initialiser? = x,2z° = 0,T° = ¢

storage, is based on QR factorisation [1]. Bgt. = Qr~Rr» 2) forn = 1;n :=n+ 1 till stopping criterion is met
be such a factorisation, whe@’, Qr~ = I is the identity and a) a; = qngTn—l for all i € An—1
whereR - is upper triangular, further letr» = Rprsrn, then b) imas = arg; max |oy|
the orthogonal Matching Pursuit solution can be calculated ¢) T =TI Uipps
1) Initialiser® = x,2z° =0,I° = @ d) UpdateQr- andRr» such thatQr-Rr» = ®rx,
2) forn =1;n :=n + 1 till stopping criterion is met QL. Qr-» =TI andRr- is upper triangular.
a) a; =¢lrntforallig ™! e) Update® .
b) imax = arg; max |a;| f) zrn = [zpa-1;2"]
Q) T =T 1 Uipas g) r"=r""!—2"q
d) UpdateQr~ andRp- such thatQr»Rpn = @, 3) sr» = Rpazrn
QZL.Qr-» =TI andRr- is upper triangular. 4) Output:r™, s
€) zr» = [zpn-1;2"] The important difference here to OMP is that we calculate the
f) r" ="t —2"q inner products used for the selection of elements using the
3) s» = Rilzpe columns of the matrix® ..

4) Output:r™, s™
Here z" = qTx and q is the new column vector added to IV. A GEOMETRIC INTERPRETATION OF THE SELECTION

Qr- in the current iteration. The required QR factorisation is PROCEDURE

most efficiently implemented using a form of modified Gram- To further clarify the difference in the selection proceslur
Schmidt procedure [13], however, contrary to the modifidoetween the two algorithms it is beneficial to look at the
Gram-Schmidt method, vectors are only orthogonalisede ongraphical representation given in figure 1.

they have been selected and are to be adddq.tdsing this Assume that the previous signal approximation is along the
approach, one needs to orthogonalise a single vector in eaehtical axis. The current residual (Labelled by r in the fegu
iteration in order to add a new column @. Note also that is then orthogonal to this direction, i.e. it has to lie witlihe

we do not need to calculag® until the last iteration, in which orthogonal subspace indicated by the shaded area. Imfgytan
we can inverfR using back substitution[13]. the columns of®,., i.e. these elements @ that have not
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procedure is based on the largest inner product with the
original elements in the dictionary, the algorithm is OMP. This
selection step can be disguised if the implementation iedas
on a form of Gram-Schmidt orthogonalisation, in which not-
selected elements are orthogonalised to the selected mieme
In this case, if the elements amet normalised when taking the
inner product, then the algorithm selects in the same manner
as OMP, normalising the orthogonalised elements before (or
during) the calculation of the inner products leads to thesOL
selection procedure, which is guaranteed to select theegiem
resulting in the smallest error after projection.

Fig. 1. Graphical representation of the problem. REFERENCES

[1] S. Mallat, G. Davis, and Z. Zhang, “Adaptive time-frequeg decompo-
sitions,” SPIE Journal of Optical Engineering/ol. 33, pp. 2183-2191,

o July 1994.
so far been selected, do not have to lie within this subspacgy v, é Pati, R. Rezaifar, and P. S. Krishnaprasad, “Ortivag matching

We have here drawn two of these vectors as examples, these pursuit: recursive function approximation with applica to wavelet
are labels pl and p2 in the figure decomposition,” in27th Asilomar Conf. on Signals, Systems and

. Comput, Nov. 1993.
OMP selects the new element based on the inner produgs; s. mallat, A Wavelet Tour of Signal Processingcademic Press, 1999.

i.e. based on the angle between the vectors and the currd4it S. Chen, S. A. Billings, and W. Luo, “Orthogonal least atps methods

; ; ; and their application to non-linear system identificatiointernational
residuat. In the figure, this would be element p2. Journal of Control vol. 50, no. 5, pp, 1873-1896, 1989,

OLS, on t_he contrary, selects the e|e_ment that i_s able 18} L. Rebollo-Neira and D. Lowe, “Optimized orthogonal rolaing pursuit

best approximate the current residual, i.e. OLS will select approac,’|EEE Signal Processing Lettersiol. 9, pp. 137-140, Apr
i ; ; 2002.
the. eleme.nt with the smallest angha‘ter this e“?me.nt IS [6] B. K. Nataratjan, “Sparse approximat solutions to linsgstems,"SIAM
prOjectgd into the orthogonal subspa_lce. The prOjectllonlof P~ Journal on Computingvol. 24, pp. 227—234, Apr 1995.
and p2 into the orthogonal subspace is here shown with dashBtl M. Gharavi-Alkhansari and T. S. Huang, "A fast orthogbmaatching
i i ; ; ; pursuit algorithm,” inProceedings of the IEEE International Conference
lines. I_t is clear that the closest angle after projectian, i on Acoustics, Speech and Signal Processprg 1389.1302, 1998,
here with p_l and n_Ot p_2. (Note that we _haV_e h_ere not drawfd) N. R. Draper and H. SmithApplied Regression Analysisioh Wiley
the normalised projections. The normalisation is reallyyon and Sons, 1966. _ ‘ _ )
required to facilitate the calculation of the angle, whiglonly ~ [°1 R- R. Hocking, "The analysis and selection of variables linear
. . . regression,’Biometrics vol. 32, no. 1, pp. 1-49, 1976.

equivalent to the inner product formulation used here when t[10; A Miller, Subset selection in regressio€hapman and Hall, 2nd ed.,

vectors all are of equal length.) 2002.
[11] D. Donoho, Y. Tsaig, I. Drori, and J. Starck, “Sparseusiohs of
underdetermined linear equations by stagewise orthogoretthing
V. A WORD ON COMPUTATIONAL COMPLEXITY pursuit.,” 2006.

. . . L [12] S. Mallat and Z. Zhang, “Matching pursuits with timefjuency dic-
In general, implementing OLS using the QR factorisation as  tionaries,” IEEE Transactions on Signal Processingl. 41, no. 12,

discussed here, is more costly than using the QR factarisati  pp. 3397-3415, 1993. _ _ _

for OMP, whenever the number of selected elements is smalfel &: H- Golub and F. Van Loariatrix Computations Johns Hopkins
’ . . University Press, 3rd ed., 1996.

than the number of columns i®, because in the OLS

implementation one has to orthogonalise all elements,enhil

OMP one only orthogonalises those elements which are being

selected.

VI. DISCUSSION AND CONCLUSION

Greedy algorithms are used increasingly in signal process-
ing. In this paper we have reviewed two common methods,
orthogonal Matching Pursuit and orthogonal Least Squares.
We have discussed the difference in the greedy selectipgn ste
The similarity of the approaches has led to some confusion
in recent literature and we hope that this communication
contributes to the clarification of some points. In a nut khel
in order to distinguish between the two algorithms, which
can appear in many different disguises, such as the QR
factorisation based implementation discussed here, osi¢cha
take a closer look at the selection procedure. If the selecti

1Remember that we assume tihg to have unit norm, which implies that
the angle is proportional to the inner product.



