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On the Difference Between Orthogonal Matching
Pursuit and Orthogonal Least Squares
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Abstract— Greedy algorithms are often used to solve under-
determined inverse problems when the solution is constrained to
be sparse, i.e. the solution is only expected to have a relatively
small number of non-zero elements. Two different algorithms
have been suggested to solve such problems in the signal pro-
cessing and control community, orthogonal Matching Pursuit and
orthogonal Least Squares respectively. In the current literature,
there exist a great deal of confusion between the two strategies.
For example, the later strategy has often be called orthogonal
Matching Pursuit and has repeatedly been “re-discovered” in
several papers. In this communication we try to pull together
some of the literature and clarify the difference between the
methods.

Index Terms— Sparse signal approximation algorithms, or-
thogonal Matching Pursuit, orthogonal Least Squares

I. I NTRODUCTION

In this communication, we discuss two greedy strategies that
were developed to solve the following problem. Given a vector
x ∈ R

Nx and a matrixΦ ∈ R
Nx×Ns , find a vectors such that

the squared error is small, whiles has only a small number of
non-zero elements. For the discussion here, we use the term
algorithm to mean any computational procedure that gives a
particular result, i.e. we here discuss two different algorithms,
which can be implemented using different computational steps.

A. Notation and theoretical overview

Let Γn be the index set of non-zero elements ofs, i.e.Γn =
{i : s1 6= 0}, wheresi is the ith element in the vectors. We
use this set to index sub-matrices ofΦ that only contain those
columns with indices inΓn, i.e ΦΓn is a sub-matrix ofΦ. We
use the same notation for sub-vectors, i.e.sΓn is a sub-vector
of s. The individual columns ofΦ will be the vectorsφi. We
assume throughout that‖φi‖ = 1.

With this notation, Orthogonal Matching Pursuit (OMP)
and Orthogonal Least Squares (OLS), both ‘greedily’ build
up the setΓn, adding a single element in each iteration. After
updatingΓn, both algorithms approximatex using:

x ≈ x̂nΦΓnsn

Γn = ΦΓnΦ
†
Γnx, (1)

where Φ
†
Γn is the More-Penrose pseudo inverse ofΦΓn .

Therefore,ΦΓnΦ
†
Γnx is the closest approximation (in the
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Euclidean distance) tox using linear combinations of the
columns inΦΓn .

The difference in the algorithms is in how they select the
new index to be added toΓ in each iteration.

B. Confusion in the literature

Before discussing the algorithms in more details we here
review the literature on the subject. The algorithm we call
Orthogonal Matching Pursuit was first proposed in the signal
processing literature by Davis, Mallat and Zhang in [1] and
at the same time appeared in a paper by Pati, Rezaiifar
and Rrishnaprasad [2]. The algorithm is discussed in some
detail in the book [3], which greatly contributed to its current
popularity.

A trail of confusion can, however, be traced back to [1],
where the authors state “This type of algorithm was first intro-
duced for control applications [4]”. However, the algorithm
proposed by Chen, Billinges and Luo in [4], which is the
algorithm we call orthogonal Least Squares, differs from OMP
as we will show below.

OLS has not played a prominent role in the signal pro-
cessing literature, which led to the repeated discovery of
this algorithm by a range of authors over the years. For
example, the optimized orthogonal Matching Pursuit algorithm
by Rebollo-Neira and Lowe [5] as well as the algorithm
proposed by Natarajan [6] are incarnations of OLS. The paper
“A fast orthogonal matching pursuit algorithm” by Gharavi-
Alkhansari and Huang [7] has not helped the matter, as the
discussed algorithm is not the OMP algorithm of [2] and [1]
as the name of the paper suggests, but is in fact the OLS
algorithm of [4].

OLS type algorithms have also appeared in the statistics
literature, for example the forward selection algorithm [8] [9]
[10] has been suggested for the subset selection problem in
regression. This method is also sometimes known as forward
selection, a name that is however normally used for a method
that also allows elements to be deleted [8]. Again, OLS
and OMP are not commonly distinguished, which has led
many prominent authors to make statements of the form
“ Orthogonal Matching Pursuit, (also called (...) stepwise
regression in other fields)”, [11].

II. ORTHOGONAL MATCHING PURSUIT

Orthogonal Matching Pursuit was developed as an improve-
ment to Matching Pursuit [12] [1]. It therefore shares many of
the properties of Matching Pursuit. In particular, the defining
quality for us, which differentiates this method from OLS, is
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the selection procedure, which it has inherited from Matching
Pursuit.

In each iteration, orthogonal Matching Pursuit calculatesa
new signal approximation̂xn. The approximation errorrn =
x − x̂n is then used in the next iteration to determine which
new element is to be selected. In particular, the selection is
based on the inner products between the curent residualrn

and the colum vectorsφi of Φ. Let these inner products be

αn

i = φT

i rn. (2)

The new element is then selected for which the magnitude of
αn

i
is largest, i.e.

inmax = argi max |αn

i | (3)

so that

Γn+1 = Γn ∪ inmax. (4)

OMP can therefore be summarised as:

• Initialise: r0 = x, s0 = 0, Γ0 = ∅
• for n = 1; n := n + 1 till stopping criterion is met

– αi = φT
i
rn−1 for all i /∈ Γn−1

– imax = argi max |αi|
– Γn = Γn−1 ∪ imax

– sn

Γn = Φ
†
Γnx

– rn = x − Φsn

The algorithm as described here does not represent a usable
strategy in many applications, as we have here written the
algorithm in a form that requires the solution to an inverse
problem in each iteration. The most efficient implementation
of the strategy, which, however, requires some additional
storage, is based on QR factorisation [1]. LetΦΓn = QΓnRΓn

be such a factorisation, whereQT

ΓnQΓn = I is the identity and
whereRΓn is upper triangular, further letzΓn = RΓnsΓn , then
the orthogonal Matching Pursuit solution can be calculatedas:

1) Initialise r0 = x, z0 = 0, Γ0 = ⊘
2) for n = 1; n := n + 1 till stopping criterion is met

a) αi = φT
i
rn−1 for all i /∈ Γn−1

b) imax = argi max |αi|
c) Γn = Γn−1 ∪ imax

d) UpdateQΓn andRΓn such thatQΓnRΓn = ΦΓn ,
QT

ΓnQΓn = I andRΓn is upper triangular.
e) zΓn = [zΓn−1 ; zn]
f) rn = rn−1 − znq

3) sΓn = R−1
Γn zΓn

4) Output:rn, sn

Here zn = qT x and q is the new column vector added to
QΓn in the current iteration. The required QR factorisation is
most efficiently implemented using a form of modified Gram-
Schmidt procedure [13], however, contrary to the modified
Gram-Schmidt method, vectors are only orthogonalised, once
they have been selected and are to be added toQ. Using this
approach, one needs to orthogonalise a single vector in each
iteration in order to add a new column toQ. Note also that
we do not need to calculatesn until the last iteration, in which
we can invertR using back substitution[13].

III. O RTHOGONAL LEAST SQUARES

The selection step used in OLS differs from the one used in
Matching Pursuit and OMP in that it selects the vectorφi, that
will lead to the minimum residual error after orthogonalisation.
It is important to realise that the OMP selection procedure
does not select that element that, after orthogonal projection
of the signal onto the selected elements, minimise the residual
norm (see for example the discussion in [5]). Though, once
the elements are selected, both OMP and OLS minimise the
residualgiven the selected elements.

Using this selection procedure, we can write the OLS
algorithm as:

• Initialise: r0 = x, s0 = 0, Γ0 = ∅
• for n = 1; n := n + 1 till stopping criterion is met

– imax = argi minΓn:Γn=Γn−1∪i ‖x − ΦΓn

i
Φ

†
Γn

i

x‖2

– Γn = Γn−1 ∪ imax

– sn

Γn = Φ
†
Γnx

– rn = x − Φsn

Again, faster implementations are based on QR factorisation
[4], however, one now uses the Modified Gram-Schmidt pro-
cedure to calculate the QR factorisation, i.e. in each iteration,
the dictionary Φ is split into two parts,ΦΓn and ΦΛn ,
where the setΛn now contains all those indices not inΓn.
The Modified Gram-Schmidt procedure [13] then iteratively
updates a QR factorisation ofΦ|Gamman = QΓnRΓn as
with OMP, however, at the same time, it keeps a modified
copy of ΦΛn , say Φ̂Λn , whose columns are the columns of
ΦΛn that have been made orthogonal to all elements inQΓn

and, crucially, that have beenre-normalised. OLS can then be
written as:

1) Initialise r0 = x, z0 = 0, Γ0 = ⊘
2) for n = 1; n := n + 1 till stopping criterion is met

a) αi = φ̂T
i
rn−1 for all i ∈ Λn−1

b) imax = argi max |αi|
c) Γn = Γn−1 ∪ imax

d) UpdateQΓn andRΓn such thatQΓnRΓn = ΦΓn ,
QT

ΓnQΓn = I andRΓn is upper triangular.
e) UpdateΦ̂Λn

f) zΓn = [zΓn−1 ; zn]
g) rn = rn−1 − znq

3) sΓn = R−1
Γn zΓn

4) Output:rn, sn

The important difference here to OMP is that we calculate the
inner products used for the selection of elements using the
columns of the matrix̂ΦΛn .

IV. A GEOMETRIC INTERPRETATION OF THE SELECTION

PROCEDURE

To further clarify the difference in the selection procedure
between the two algorithms it is beneficial to look at the
graphical representation given in figure 1.

Assume that the previous signal approximation is along the
vertical axis. The current residual (Labelled by r in the figure)
is then orthogonal to this direction, i.e. it has to lie within the
orthogonal subspace indicated by the shaded area. Importantly,
the columns ofΦΛn , i.e. these elements ofΦ that have not
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p1
p2

r

Fig. 1. Graphical representation of the problem.

so far been selected, do not have to lie within this subspace.
We have here drawn two of these vectors as examples, these
are labels p1 and p2 in the figure.

OMP selects the new element based on the inner product,
i.e. based on the angle between the vectors and the current
residual1. In the figure, this would be element p2.

OLS, on the contrary, selects the element that is able to
best approximate the current residual, i.e. OLS will select
the element with the smallest angleafter this element is
projected into the orthogonal subspace. The projection of p1
and p2 into the orthogonal subspace is here shown with dashed
lines. It is clear that the closest angle after projection, is
here with p1 and not p2. (Note that we have here not drawn
the normalised projections. The normalisation is really only
required to facilitate the calculation of the angle, which is only
equivalent to the inner product formulation used here when the
vectors all are of equal length.)

V. A WORD ON COMPUTATIONAL COMPLEXITY

In general, implementing OLS using the QR factorisation as
discussed here, is more costly than using the QR factorisation
for OMP, whenever the number of selected elements is smaller
than the number of columns inΦ, because in the OLS
implementation one has to orthogonalise all elements, while in
OMP one only orthogonalises those elements which are being
selected.

VI. D ISCUSSION AND CONCLUSION

Greedy algorithms are used increasingly in signal process-
ing. In this paper we have reviewed two common methods,
orthogonal Matching Pursuit and orthogonal Least Squares.
We have discussed the difference in the greedy selection step.
The similarity of the approaches has led to some confusion
in recent literature and we hope that this communication
contributes to the clarification of some points. In a nut shell,
in order to distinguish between the two algorithms, which
can appear in many different disguises, such as the QR
factorisation based implementation discussed here, one has to
take a closer look at the selection procedure. If the selection

1Remember that we assume theφi to have unit norm, which implies that
the angle is proportional to the inner product.

procedure is based on the largest inner product with the
original elements in the dictionary, the algorithm is OMP. This
selection step can be disguised if the implementation is based
on a form of Gram-Schmidt orthogonalisation, in which not-
selected elements are orthogonalised to the selected elements.
In this case, if the elements arenot normalised when taking the
inner product, then the algorithm selects in the same manner
as OMP, normalising the orthogonalised elements before (or
during) the calculation of the inner products leads to the OLS
selection procedure, which is guaranteed to select the element
resulting in the smallest error after projection.
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