EPFL

Splines and imaging:

From compressed sensing to deep neural nets

Michael Unser Biomedical Imaging Group EPFL, Lausanne, Switzerland

Plenary talk: Int. Conf. Signal Processing and Communications (SPCOM'20), IISc Bangalore, July 20-23, 2020

Variational formulation of inverse problems

Linear forward model

Problem: recover s from noisy measurements y

■ Reconstruction as an optimization problem

$$\mathbf{s_{rec}} = \arg\min_{\mathbf{s} \in \mathbb{R}^N} \underbrace{\|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2}_{\text{data consistency}} + \underbrace{\lambda \|\mathbf{L}\mathbf{s}\|_p^p}_{\text{regularization}}, \quad p = 1, 2$$

Linear inverse problems (20th century theory)

■ Dealing with **ill-posed problems**: Tikhonov **regularization**

 $\mathcal{R}(\mathbf{s}) = \|\mathbf{L}\mathbf{s}\|_2^2$: regularization (or smoothness) functional

L: regularization operator (i.e., Gradient)

$$\min_{\mathbf{s}} \mathcal{R}(\mathbf{s})$$
 subject to $\|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2 \le \sigma^2$

Andrey N. Tikhonov (1906-1993)

Equivalent variational problem

$$\mathbf{s}^{\star} = \arg\min \underbrace{\|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2}_{\text{data consistency}} + \underbrace{\lambda \|\mathbf{L}\mathbf{s}\|_2^2}_{\text{regularization}}$$

Formal linear solution: $\mathbf{s} = (\mathbf{H}^T \mathbf{H} + \lambda \mathbf{L}^T \mathbf{L})^{-1} \mathbf{H}^T \mathbf{y} = \mathbf{R}_{\lambda} \cdot \mathbf{y}$

Interpretation: "filtered" backprojection

3

Learning as a (linear) inverse problem

but an infinite-dimensional one ...

Given the data points $(x_m,y_m)\in\mathbb{R}^{N+1}$, find $f:\mathbb{R}^N\to\mathbb{R}$ s.t. $f(x_m)pprox y_m$ for $m=1,\ldots,M$

Introduce smoothness or regularization constraint

$$R(f) = \|f\|_{\mathcal{H}}^2 = \|\mathrm{L}f\|_{L_2}^2 = \int_{\mathbb{R}^N} |\mathrm{L}f(x)|^2 \mathrm{d}x$$
: regularization functional

$$\min_{f \in \mathcal{H}} R(f)$$
 subject to $\sum_{m=1}^{M} \left| y_m - f(m{x}_m) \right|^2 \leq \sigma^2$

■ Regularized least-squares fit (theory of RKHS)

$$f_{\text{RKHS}} = \arg\min_{f \in \mathcal{H}} \left(\sum_{m=1}^{M} |y_m - f(\boldsymbol{x}_m)|^2 + \lambda ||f||_{\mathcal{H}}^2 \right)$$

⇒ kernel estimator
(Wahba 1990; Schölkopf 2001)

OUTLINE

Introduction

- Image reconstruction as an inverse problem
- Learning as an inverse problem

Continuous-domain theory of sparsity

- Splines and operators
- gTV regularization: representer theorem for CS

From compressed sensing to deep neural networks

Unrolling forward/backward iterations: FBPConv

Deep neural networks vs. deep splines

- Continuous piecewise linear (CPWL) functions / splines
- New representer theorem for deep neural networks

5

Part I: Continuous-domain theory of sparsity

 L_1 splines

(Fisher-Jerome 1975)

gTV optimality of splines for inverse problems (U.-Fageot-Ward, *SIAM Review* 2017)

Splines are analog, but intrinsically sparse

 $L\{\cdot\}$: differential operator (translation-invariant)

 δ : Dirac distribution

Definition

The function $s:\mathbb{R}^d o \mathbb{R}$ (possibly of slow growth) is a **nonuniform** L**-spline** with **knots** $\{x_k\}_{k\in S}$

$$\Leftrightarrow \qquad \mathrm{L} s = \sum_{k \in S} a_k \delta(\cdot - oldsymbol{x}_k) \ = w \ : \ \ \mathsf{spline's innovation}$$

Spline theory: (Schultz-Varga, 1967)

-

Spline synthesis: example

$$L = D = \frac{d}{dr}$$

Null space:
$$\mathcal{N}_D = \operatorname{span}\{p_1\}, \quad p_1(x) = 1$$

$$\rho_{\mathrm{D}}(x) = \mathrm{D}^{-1}\{\delta\}(x) = \mathbbm{1}_+(x) :$$
 Heaviside function

Spline synthesis: generalization

L: **spline-admissible** operator (LSI)

Finite-dimensional null space: $\mathcal{N}_{\mathrm{L}} = \mathrm{span}\{p_n\}_{n=1}^{N_0}$

Green's function of L: $ho_L(oldsymbol{x}) = L^{-1}\{\delta\}(oldsymbol{x})$

Spline's innovation: $w_{\delta}(m{x}) = \sum_k a_k \delta(m{x} - m{x}_k)$

Requires specification of boundary conditions

 x_k

Proper continuous counterpart of $\ell_1(\mathbb{Z}^d)$

 $\mathcal{S}(\mathbb{R}^d)$: Schwartz's space of smooth and rapidly decaying test functions on \mathbb{R}^d

 $\mathcal{S}'(\mathbb{R}^d)$: Schwartz's space of tempered distributions

lacksquare Space of real-valued **bounded Radon measures** on \mathbb{R}^d

$$\mathcal{M}(\mathbb{R}^d) = \left(C_0(\mathbb{R}^d)\right)' = \left\{w \in \mathcal{S}'(\mathbb{R}^d) : \|w\|_{\mathcal{M}} = \sup_{\varphi \in \mathcal{S}(\mathbb{R}^d): \|\varphi\|_{\infty} = 1} \langle w, \varphi \rangle < \infty\right\},\,$$

where $w: \varphi \mapsto \langle w, \varphi \rangle \stackrel{\Delta}{=} \int_{\mathbb{R}^d} \varphi({\pmb r}) w({\pmb r}) \mathrm{d}{\pmb r}$

Basic inclusions

$$\forall f \in L_1(\mathbb{R}^d): \ \|f\|_{\mathcal{M}} = \|f\|_{L_1(\mathbb{R}^d)} \quad \Rightarrow \quad L_1(\mathbb{R}^d) \subseteq \mathcal{M}(\mathbb{R}^d)$$

$$ullet$$
 $\delta(\cdot-m{x}_0)\in\mathcal{M}(\mathbb{R}^d)$ with $\|\delta(\cdot-m{x}_0)\|_{\mathcal{M}}=1$ for any $m{x}_0\in\mathbb{R}^d$

Representer theorem for gTV regularization

- L: spline-admissible operator with null space $\mathcal{N}_{L} = \operatorname{span}\{p_n\}_{n=1}^{N_0}$
- $\ \, {\rm I\!\!\!\! I} \ \, {\rm gTV \ semi-norm:} \ \, \|{\rm L}\{s\}\|_{\mathcal M} = \sup_{\|\varphi\|_\infty \le 1} \langle {\rm L}\{s\},\varphi\rangle$
- lacktriangle Measurement functionals $h_m:\mathcal{M}_{\mathrm{L}}(\mathbb{R}^d) o\mathbb{R}$ (weak*-continuous)

$$\mathcal{M}_{\mathrm{L}}(\mathbb{R}^d) = \left\{ f \in \mathcal{S}'(\mathbb{R}^d) : \|\mathrm{L}f\|_{\mathcal{M}} < \infty \right\}$$

(P1)
$$\arg\min_{f \in \mathcal{M}_{\mathrm{L}}(\mathbb{R}^d)} \left(\sum_{m=1}^M |y_m - \langle h_m, f \rangle|^2 + \lambda \|\mathrm{L}f\|_{\mathcal{M}} \right)$$

Convex loss function: $F:\mathbb{R}^M\times\mathbb{R}^M\to\mathbb{R}$

$$\boldsymbol{\nu}:\mathcal{M}_{\mathrm{L}}\to\mathbb{R}^{M}$$
 with $\boldsymbol{\nu}(f)=\left(\langle h_{1},f\rangle,\ldots,\langle h_{M},f\rangle\right)$

$$\text{(P1')} \quad \arg \min_{f \in \mathcal{M}_{\mathbf{L}}(\mathbb{R}^d)} \left(F \big(\boldsymbol{y}, \boldsymbol{\nu}(f) \big) + \lambda \| \mathbf{L} f \|_{\mathcal{M}} \right)$$

Representer theorem for gTV-regularization

The extreme points of (P1') are non-uniform L-spline of the form

$$f_{ ext{spline}}(oldsymbol{x}) = \sum_{k=1}^{K_{ ext{knots}}} a_k
ho_{ ext{L}}(oldsymbol{x} - oldsymbol{x}_k) + \sum_{n=1}^{N_0} b_n p_n(oldsymbol{x})$$

with ρ_L such that $L\{\rho_L\} = \delta$, $K_{knots} \leq M - N_0$, and $\|Lf_{spline}\|_{\mathcal{M}} = \|\mathbf{a}\|_{\ell_1}$.

(U.-Fageot-Ward, SIAM Review 2017)

Example: 1D inverse problem with TV⁽²⁾ regularization

$$s_{\text{spline}} = \arg\min_{s \in \mathcal{M}_{D^2}(\mathbb{R})} \left(\sum_{m=1}^M |y_m - \langle h_m, s \rangle|^2 + \lambda \text{TV}^{(2)}(s) \right)$$

■ Total 2nd-variation: $TV^{(2)}(s) = \sup_{\|\varphi\|_{\infty} \le 1} \langle D^2 s, \varphi \rangle = \|D^2 s\|_{\mathcal{M}}$

$$\mathcal{L}=\mathcal{D}^2=\frac{\mathrm{d}^2}{\mathrm{d}x^2} \hspace{1cm} \rho_{\mathcal{D}^2}(x)=(x)_+\text{: ReLU} \hspace{1cm} \mathcal{N}_{\mathcal{D}^2}=\mathrm{span}\{1,x\}$$

Generic form of the solution

$$s_{\mathrm{spline}}(x) = b_1 + b_2 x + \sum_{k=1}^{K} a_k (x - \tau_k)_+$$

with K < M and free parameters b_1, b_2 and $(a_k, \tau_k)_{k=1}^K$

Other spline-admissible operators

 $\mathbf{L} = \mathbf{D}^n$ (pure derivatives)

(Schoenberg 1946)

- \Rightarrow polynomial splines of degree (n-1)

lacksquare $L=D^n+a_{n-1}D^{n-1}+\cdots+a_0I$ (ordinary differential operator)

(Dahmen-Micchelli 1987)

- ⇒ exponential splines
- \blacksquare Fractional derivatives: $L = D^{\gamma} \longleftrightarrow$
- $(i\omega)^{\gamma}$

(U.-Blu 2000)

- ⇒ fractional splines
- Fractional Laplacian:
- $(-\Delta)^{rac{\gamma}{2}} \quad \stackrel{\mathcal{F}}{\longleftrightarrow} \quad \|\omega\|^{\gamma}$

(Duchon 1977)

- ⇒ polyharmonic splines
- \blacksquare Elliptical differential operators; e.g, $\quad L = (-\Delta + \alpha I)^{\gamma}$

(Ward-U. 2014)

⇒ Sobolev splines

Recovery with sparsity constraints: discretization

Constrained optimization formulation

Auxiliary innovation variable: $\mathbf{u} = \mathbf{L}\mathbf{s}$

$$\mathbf{s}_{\mathrm{sparse}} = \arg\min_{\mathbf{s} \in \mathbb{R}^N} \left(\frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2 + \lambda \|\mathbf{u}\|_1 \right) \text{ subject to } \mathbf{u} = \mathbf{L}\mathbf{s}$$

Augmented Lagrangian method

Quadratic penalty term: $\frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_2^2$

Lagrange multipler vector: α

$$\mathcal{L}_{\mathcal{A}}(\mathbf{s}, \mathbf{u}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \lambda \sum_{n} |[\mathbf{u}]_{n}| + \boldsymbol{\alpha}^{T} (\mathbf{L}\mathbf{s} - \mathbf{u}) + \frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_{2}^{2}$$

(Ramani-Fessler, IEEE TMI 2011)

Discretization: compatible with CS paradigm

$$\mathbf{s}_{\mathrm{sparse}} = \arg\min_{\mathbf{s} \in \mathbb{R}^K} \left(\frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2 + \lambda \|\mathbf{u}\|_1 \right) \text{ subject to } \mathbf{u} = \mathbf{L}\mathbf{s}$$

$$\mathcal{L}_{\mathcal{A}}(\mathbf{s}, \mathbf{u}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \lambda \sum_{n} |[\mathbf{u}]_{n}| + \boldsymbol{\alpha}^{T} (\mathbf{L}\mathbf{s} - \mathbf{u}) + \frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_{2}^{2}$$

ADMM algorithm

For
$$k = 0, \dots, K$$

Linear step

$$\mathbf{s}^{k+1} = \left(\mathbf{H}^T \mathbf{H} + \mu \mathbf{L}^T \mathbf{L}\right)^{-1} \left(\mathbf{z}_0 + \mathbf{z}^{k+1}\right)$$
with $\mathbf{z}^{k+1} = \mathbf{L}^T \left(\mu \mathbf{u}^k - \alpha^k\right)$

$$\boldsymbol{\alpha}^{k+1} = \boldsymbol{\alpha}^k + \mu \left(\mathbf{L} \mathbf{s}^{k+1} - \mathbf{u}^k\right)$$

Proximal step = pointwise non-linearity $\mathbf{u}^{k+1} = \mathrm{prox}_{|\cdot|} \big(\mathbf{L}\mathbf{s}^{k+1} + \tfrac{1}{\mu}\boldsymbol{\alpha}^{k+1}; \tfrac{\lambda}{\mu}\big)$

15

Example: ISMRM reconstruction challenge

 \mathcal{L}_2 regularization (Laplacian)

TV regularization

M. Guerquin-Kern, M. Häberlin, K.P. Pruessmann, M. Unser, IEEE Trans. Medical Imaging, 2011.

OUTLINE

- Introduction
- Continuous-domain theory of sparsity
- From compressed sensing to deep neural networks
 - Unrolling forward/backward iterations: FBPConv
- Deep neural networks vs. deep splines
 - Continuous piecewise linear (CPWL) functions / splines
 - New representer theorem for deep neural networks

Discretization: compatible with CS paradigm

$$\mathbf{s}_{\mathrm{sparse}} = \arg\min_{\mathbf{s} \in \mathbb{R}^K} \left(\frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_2^2 + \lambda \|\mathbf{u}\|_1 \right) \text{ subject to } \mathbf{u} = \mathbf{L}\mathbf{s}$$

$$\mathcal{L}_{\mathcal{A}}(\mathbf{s}, \mathbf{u}, \boldsymbol{\alpha}) = \frac{1}{2} \|\mathbf{y} - \mathbf{H}\mathbf{s}\|_{2}^{2} + \lambda \sum_{n} |[\mathbf{u}]_{n}| + \boldsymbol{\alpha}^{T} (\mathbf{L}\mathbf{s} - \mathbf{u}) + \frac{\mu}{2} \|\mathbf{L}\mathbf{s} - \mathbf{u}\|_{2}^{2}$$

ADMM algorithm

For
$$k=0,\ldots,K$$

$$\mathbf{s}^{k+1} = \left(\mathbf{H}^T\mathbf{H} + \mu \mathbf{L}^T\mathbf{L}\right)^{-1} \left(\mathbf{z}_0 + \mathbf{z}^{k+1}\right)$$

$$\qquad \qquad \text{with} \quad \mathbf{z}^{k+1} = \mathbf{L}^T \left(\mu \mathbf{u}^k - \boldsymbol{\alpha}^k\right)$$
 $\boldsymbol{\alpha}^{k+1} = \boldsymbol{\alpha}^k + \mu \left(\mathbf{L}\mathbf{s}^{k+1} - \mathbf{u}^k\right)$

$$\mathbf{u}^{k+1} = \mathbf{prox}_{|\cdot|} \left(\mathbf{L}\mathbf{s}^{k+1} + \frac{1}{\mu} \boldsymbol{\alpha}^{k+1}; \frac{\lambda}{\mu} \right)$$

Identification of convolution operators

Normal matrix: $\mathbf{A} = \mathbf{H}^T \mathbf{H}$ (symmetric)

Generic linear solver: $\mathbf{s} = (\mathbf{A} + \lambda \mathbf{L}^T \mathbf{L})^{-1} \mathbf{H}^T \mathbf{y} = \mathbf{R}_{\lambda} \cdot \mathbf{y}$

- Recognizing structured matrices
 - L: convolution matrix \Rightarrow L^TL: symmetric convolution matrix
 - \mathbf{L} , \mathbf{A} : convolution matrices \Rightarrow $(\mathbf{A} + \lambda \mathbf{L}^T \mathbf{L})$: symmetric convolution matrix
 - Applicable to
- deconvolution microscopy (Wiener filter)
- parallel rays computer tomography (FBP)
- MRI, including non-uniform sampling of k-space
- Justification for use of convolution neural nets (CNN)

(see Theorem 1, Jin et al., IEEE TIP 2017)

40

Connection with deep neural networks

Unrolled Iterative Shrinkage Thresholding Algorithm (ISTA)

(Gregor-LeCun 2010)

Recent advent of Deep ConvNets

(Jin et al. 2016; Adler-Öktem 2017; Chen et al. 2017; ...)

- CT reconstruction based on Deep ConvNets
 - Input: Sparse view FBP reconstruction
 - Training: Set of 500 high-quality full-view CT reconstructions
 - Architecture: U-Net with skip connection

(Jin et al., IEEE TIP 2017)

X-ray computer tomography data

Dose reduction by 7: 143 views

Reconstructed from from 1000 views

X-ray computer tomography data

Dose reduction by 7: 143 views

Reconstructed from from 1000 views

MAYO CLINIC

(Jin et al, IEEE Trans. Im Proc., 2017)

X-ray computer tomography data

Dose reduction by 20: 50 views

Reconstructed from from 1000 views

(Jin-McCann-Froustey-Unser, IEEE Trans. Im Proc., 2017)

OUTLINE

- Introduction
- Continuous-domain theory of sparsity
- From compressed sensing to deep neural networks
- Deep neural networks vs. deep splines
 - Background
 - Continuous piecewise linear (CPWL) functions / splines
 - New representer theorem for deep neural networks

25

Deep neural networks and splines

- Preferred choice of activation function: ReLU
 - ReLU works nicely with dropout / ℓ_1 -regularization
 - Networks with hidden ReLU are easier to train
 - State-of-the-art performance

 $ReLU(x;b) = (x-b)_{+}$

(Glorot ICAIS 2011)

(LeCun-Bengio-Hinton Nature 2015)

- Deep nets as Continuous PieceWise-Linear maps
 - \blacksquare ReLU \Rightarrow CPWL

■ CPWL ⇒ Deep ReLU network

(Montufar NIPS 2014)

(Strang SIAM News 2018)

■ Deep ReLU nets = hierarchical splines

■ ReLU is a piecewise-linear spline

(Poggio-Rosasco 2015)

Feedforward deep neural network

- \blacksquare Layers: $\ell = 1, \ldots, L$
- Deep structure descriptor: (N_0, N_1, \cdots, N_L)
- Neuron or node index: $(n, \ell), n = 1, \dots, N_{\ell}$
- Activation function: $\sigma: \mathbb{R} \to \mathbb{R}$ (ReLU)
- lacksquare Linear step: $\mathbb{R}^{N_{\ell-1}} o \mathbb{R}^{N_\ell}$ $f_\ell: x \mapsto f_\ell(x) = \mathbf{W}_\ell x + \mathbf{b}_\ell$
- Nonlinear step: $\mathbb{R}^{N_\ell} o \mathbb{R}^{N_\ell}$ $\sigma_\ell : x \mapsto \sigma_\ell(x) = \left(\sigma(x_1), \dots, \sigma(x_{N_\ell})\right)$

 $\mathbf{f}_{\mathrm{deep}}(x) = (\pmb{\sigma}_L \circ \pmb{f}_L \circ \pmb{\sigma}_{L-1} \circ \cdots \circ \pmb{\sigma}_2 \circ \pmb{f}_2 \circ \pmb{\sigma}_1 \circ \pmb{f}_1) \, (x)$

27

Continuous-PieceWise Linear (CPWL) functions

■ 1D: Non-uniform spline de degree 1

Partition:
$$\mathbb{R} = \bigcup_{k=0}^K P_k$$
 with $P_k = [\tau_k, \tau_{k+1}), \tau_0 = -\infty < \tau_1 < \dots < \tau_K < \tau_{K+1} = +\infty$.

The function $f_{\mathrm{spline}}:\mathbb{R} o \mathbb{R}$ is a piecewise-linear spline with knots au_1,\ldots, au_K if

- $lacksquare (i): f_{
 m spline} ext{ is continuous } \mathbb{R}
 ightarrow \mathbb{R}$

CPWL functions in high dimensions

Multidimensional generalization

Partition of domain into a finite number of non-overlapping convex polytopes; i.e.,

$$\mathbb{R}^N = \bigcup_{k=1}^K P_k$$
 with $\mu(P_{k_1} \cap P_{k_2}) = 0$ for all $k_1 \neq k_2$

The function $f_{\mathrm{CPWL}}:\mathbb{R}^N o \mathbb{R}$ is **continuous piecewise-linear** with partition P_1,\dots,P_K

- lacksquare $(i): f_{\mathrm{CPWL}}$ is continuous $\mathbb{R}^N o \mathbb{R}$
- ullet (ii): for $oldsymbol{x} \in P_k: f_{\mathrm{CPWL}}(oldsymbol{x}) = f_k(oldsymbol{x}) \stackrel{ riangle}{=} oldsymbol{\mathbf{a}}_k^T oldsymbol{x} + b_k ext{ with } oldsymbol{\mathbf{a}}_k \in \mathbb{R}^N, b_k \in \mathbb{R}, k = 1, \dots, K$

The vector-valued function $\mathbf{f}_{\mathrm{CPWL}} = (f_1, \dots, f_M) : \mathbb{R}^N \to \mathbb{R}^M$ is a CPWL if each component function $f_m : \mathbb{R}^N \to \mathbb{R}$ is CPWL.

Algebra of CPWL functions

- ullet any linear combination of (vector-valued) CPWL functions $\mathbb{R}^N o \mathbb{R}^{N'}$ is CPWL, and,
- the composition $\mathbf{f}_2 \circ \mathbf{f}_1$ of any two CPWL functions with compatible domain and range—i.e., $\mathbf{f}_2: \mathbb{R}^{N_1} \to \mathbb{R}^{N_2}$ and $\mathbf{f}_1: \mathbb{R}^{N_0} \to \mathbb{R}^{N_1}$ —is CPWL $\mathbb{R}^{N_0} \to \mathbb{R}^{N_2}$.

Sketch of proof: The continuity property is preserved through composition. The composition of two affine transforms is an affine transform, including the scenari where the domain is partitioned.

• The max (resp. min) pooling of two (or more) CPWL functions is CPWL.

Implication for deep ReLU neural networks

<mark>५,</mark>espline_

- Each scalar neuron activation, $\sigma_{n,\ell}(x) = \operatorname{ReLU}(x)$, is CPWL.
- lacksquare Each layer function $m{\sigma}_{\ell}\circm{f}_{\ell}(m{x})=(\mathbf{W}_{\ell}m{x}+\mathbf{b}_{\ell})_{+}$ is CPWL
- lacksquare The whole feedforward network $\mathbf{f}_{\mathrm{deep}}:\mathbb{R}^{N_0} o\mathbb{R}^{N_L}$ is CPWL
- This holds true as well for deep architectures that involve Max pooling for dimension reduction
- The CPWL also remains valid for more complicated neuronal responses as long as they are CPWL; that is, **linear splines**.

21

CPWL functions: further properties

■ The CPWL model has universal approximation properties (as one increases the number of regions)

■ Any CPWL function $\mathbb{R}^N \to \mathbb{R}$ can be implement via a deep ReLU network with no more than $\log_2(N+1)+1$ layers

(Arora ICLR 2018)

Refinement: free-form activation functions

- Layers: $\ell = 1, \ldots, L$
- Deep structure descriptor: (N_0, N_1, \cdots, N_L)
- Neuron or node index: $(n, \ell), n = 1, \dots, N_{\ell}$
- Activation function: $\sigma: \mathbb{R} \to \mathbb{R}$ (ReLU)
- lacksquare Linear step: $\mathbb{R}^{N_{\ell-1}} o \mathbb{R}^{N_\ell}$ $f_\ell: m{x} \mapsto m{f}_\ell(m{x}) = m{W}_\ell m{x} + m{b}_\ell$
- lacksquare Nonlinear step: $\mathbb{R}^{N_\ell} o \mathbb{R}^{N_\ell}$

$$oldsymbol{\sigma_\ell}: oldsymbol{x} \mapsto oldsymbol{\sigma_\ell}(oldsymbol{x}) = ig(\sigma_{n,\ell}(x_1), \ldots, \sigma_{N_\ell,\ell}(x_{N_\ell})ig)$$

$$\mathbf{f}_{ ext{deep}}(m{x}) = (m{\sigma}_L \circ m{f}_L \circ m{\sigma}_{L-1} \circ \cdots \circ m{\sigma}_2 \circ m{f}_2 \circ m{\sigma}_1 \circ m{f}_1) \, (m{x})$$

Joint learning / training ?

33

Constraining activation functions

- Regularization functional
 - Should not penalize simple solutions (e.g., identity or linear scaling)
 - Should impose diffentiability (for DNN to be trainable via backpropagation)
 - Should favor simplest CPWL solutions; i.e., with "sparse 2nd derivatives"
- Second total-variation of $\sigma: \mathbb{R} \to \mathbb{R}$

$$TV^{(2)}(\sigma) \stackrel{\triangle}{=} \|D^2 \sigma\|_{\mathcal{M}} = \sup_{\varphi \in \mathcal{S}(\mathbb{R}): \|\varphi\|_{\infty} \le 1} \langle D^2 \sigma, \varphi \rangle$$

Native space for $(\mathcal{M}(\mathbb{R}), \mathrm{D}^2)$

$$BV^{(2)}(\mathbb{R}) = \{ f : \mathbb{R} \to \mathbb{R} : \|D^2 f\|_{\mathcal{M}} < \infty \}$$

Representer theorem for deep neural networks

Theorem $(\mathrm{TV}^{(2)}\text{-optimality of deep spline networks)}$

(U. JMLR 2019)

- \blacksquare neural network $\mathbf{f}: \mathbb{R}^{N_0} \to \mathbb{R}^{N_L}$ with deep structure (N_0, N_1, \dots, N_L)
 - $oldsymbol{x}\mapsto\mathbf{f}(oldsymbol{x})=\left(oldsymbol{\sigma_L}\circoldsymbol{\ell}_L\circoldsymbol{\sigma_{L-1}}\circ\cdots\circoldsymbol{\ell}_2\circoldsymbol{\sigma_1}\circoldsymbol{\ell}_1
 ight)(oldsymbol{x})$
- **normalized** linear transformations $\boldsymbol{\ell}_{\ell}: \mathbb{R}^{N_{\ell-1}} \to \mathbb{R}^{N_{\ell}}, \boldsymbol{x} \mapsto \mathbf{U}_{\ell} \boldsymbol{x}$ with weights $\mathbf{U}_{\ell} = [\mathbf{u}_{1,\ell} \ \cdots \ \mathbf{u}_{N_{\ell},\ell}]^T \in \mathbb{R}^{N_{\ell} \times N_{\ell-1}}$ such that $\|\mathbf{u}_{n,\ell}\| = 1$
- free-form activations $\sigma_{\ell} = (\sigma_{1,\ell}, \dots, \sigma_{N_{\ell},\ell}) : \mathbb{R}^{N_{\ell}} \to \mathbb{R}^{N_{\ell}} \text{ with } \sigma_{1,\ell}, \dots, \sigma_{N_{\ell},\ell} \in \mathrm{BV}^{(2)}(\mathbb{R})$

Given a series data points (x_m, y_m) m = 1, ..., M, we then define the training problem

$$\arg \min_{(\mathbf{U}_{\ell}),(\boldsymbol{\sigma}_{\boldsymbol{n},\boldsymbol{\ell}} \in \mathrm{BV}^{(2)}(\mathbb{R}))} \left(\sum_{m=1}^{M} E(\boldsymbol{y}_{m},\mathbf{f}(\boldsymbol{x}_{m})) + \mu \sum_{\ell=1}^{N} R_{\ell}(\mathbf{U}_{\ell}) + \lambda \sum_{\ell=1}^{L} \sum_{n=1}^{N_{\ell}} \mathrm{TV}^{(2)}(\boldsymbol{\sigma}_{\boldsymbol{n},\boldsymbol{\ell}}) \right)$$
(1)

- $lacksquare E: \mathbb{R}^{N_L} imes \mathbb{R}^{N_L} o \mathbb{R}^+$: arbitrary convex error function
- $\blacksquare R_{\ell}: \mathbb{R}^{N_{\ell} \times N_{\ell-1}} \to \mathbb{R}^+$: convex cost

If solution of (1) exists, then it is achieved by a deep spline network with activations of the form

$$\sigma_{n,\ell}(x) = b_{1,n,\ell} + b_{2,n,\ell}x + \sum_{k=1}^{K_{n,\ell}} a_{k,n,\ell}(x - \tau_{k,n,\ell})_+,$$

with adaptive parameters $K_{n,\ell} \leq M-2$, $\tau_{1,n,\ell},\ldots,\tau_{K_{n,\ell},n,\ell} \in \mathbb{R}$, and $b_{1,n,\ell},b_{2,n,\ell},a_{1,n,\ell},\ldots,a_{K_{n,\ell},n,\ell} \in \mathbb{R}$.

Outcome of representer theorem

Each neuron (fixed index (n, ℓ)) is characterized by

- its number $0 \le K_{n,\ell}$ of knots (ideally, much smaller than M);
- the location $\{\tau_k = \tau_{k,n,\ell}\}_{k=1}^{K_{n,\ell}}$ of these knots (ReLU biases);
- the expansion coefficients $\mathbf{b}_{n,\ell} = (b_{1,n,\ell}, b_{2,n,\ell}) \in \mathbb{R}^2$, $\mathbf{a}_{n,\ell} = (a_{1,n,\ell}, \dots, a_{K,n,\ell}) \in \mathbb{R}^K$.

These parameters (including the number of knots) are **data-dependent** and adjusted automatically during training.

Link with ℓ_1 minimization techniques

$$\mathrm{TV}^{(2)}\{\sigma_{n,\ell}\} = \sum_{k=1}^{K_{n,\ell}} |a_{k,n,\ell}| = \|\mathbf{a}_{n,\ell}\|_1$$

Deep spline networks: Discussion

- Global optimality achieved with spline activations
- Justification of popular schemes / Backward compatibility

Standard ReLU networks $(K_{n,\ell} = 1, b_{n,\ell} = 0)$

(Glorot *ICAIS* 2011) (LeCun-Bengio-Hinton *Nature* 2015)

- Linear regression: $\lambda \to \infty \Rightarrow K_{n,\ell} = 0$
- State-of-the-art Parametric ReLU networks $(K_{n,\ell}=1)$ (He et al. CVPR 2015) 1 ReLU + linear term (per neuron)
- Adaptive-piecewise linear (APL) networks $(K_{n,\ell} = 5 \text{ or } 7, \ b_{n,\ell} = 0)$ (Agostinelli et al. 2015)

37

Comparison of linear interpolators

$$\arg\min_{f\in \mathrm{BV}^{(2)}(\mathbb{R})}\|\mathrm{D}^2 f\|_{\mathcal{M}}\quad \text{s.t.}\quad f(x_m)=y_m,\ m=1,\ldots,M$$

(U. JMLR 2019; Lemma 2)

Deep spline networks (Cont'd)

Key features

- \blacksquare Direct control of complexity (number of knots): adjustment of λ
- Ability to suppress unnecessary layers

Generalizations

- Broad family of cost functionals
- Cases where a subset of network components is fixed
- Generalized forms of regularization: $\psi(\mathrm{TV}^{(2)}(\sigma_{n,\ell}))$

Challenges

Adaptive knots: more difficult optimization problem

⇒ In need for more powerful training algorithms

- Optimal allocation of knots
 - ℓ_1 -minimization with knot deletion mechanism (even for single layer)
- Finding the tradeoff: more complex activations vs. deeper architectures

39

CONCLUSION: The return of the spline

- Continuous-domain formulation of compressed sensing
 - gTV regularization ⇒ global optimizer is a *L*-spline
 - Sparsifying effect: few adaptive knots
 - Discretization consistent with standard paradigm: minimization

Foundations of machine learning

- Traditional kernel methods are closely related to splines (with one knot/kernel per data point)
- Deep ReLU neural nets are high-dimensional piecewise-linear splines
- Free-form activations with TV-regularization ⇒ Deep splines

Favorable properties of splines

- Simplicity (e.g., piecewise polynomial)
- (higher-order) **continuity**: the difficult part in high dimensions
- Adaptivity/sparsity: the fewest possible pieces = Occam's razor
- Efficiency: B-spline calculus

ACKNOWLEDGMENTS

Many thanks to (former) members of EPFL's Biomedical Imaging Group

- Dr. Julien Fageot
- Prof. John Paul Ward
- Dr. Mike McCann
- Dr. Kyong Jin
- Harshit Gupta
- Dr. Ha Nguyen
- Dr. Emrah Bostan
- Prof. Ulugbek Kamilov
- Prof. Matthieu Guerquin-Kern

....

and collaborators ...

- Prof. Demetri Psaltis
- Prof. Marco Stampanoni
- Prof. Carlos-Oscar Sorzano

References

- Optimality of splines
 - M. Unser, J. Fageot, J.P. Ward, "Splines Are Universal Solutions of Linear Inverse Problems with Generalized-TV Regularization," *SIAM Review*, vol. 59, No. 4, pp. 769-793, 2017.
- Image reconstruction with sparsity constraints (CS)
 - M. Guerquin-Kern, M. Häberlin, K.P. Pruessmann, M. Unser, "A Fast Wavelet-Based Reconstruction Method for Magnetic Resonance Imaging," *IEEE Transactions on Medical Imaging*, vol. 30, no. 9, pp. 1649-1660, 2011.
 - E. Bostan, U.S. Kamilov, M. Nilchian, M. Unser, "Sparse Stochastic Processes and Discretization of Linear Inverse Problems," *IEEE Trans. Image Processing*, vol. 22, no. 7, pp. 2699-2710, 2013.

Deep neural networks

- K.H. Jin, M.T. McCann, E. Froustey, M. Unser, "Deep Convolutional Neural Network for Inverse Problems in Imaging," *IEEE Trans. Image Processing*, vol. 26, no. 9, pp. 4509-4522, Sep. 2017.
- H. Gupta, K.H. Jin, H.Q. Nguyen, M.T. McCann, M. Unser, "CNN-Based Projected Gradient Descent for Consistent CT Image Reconstruction," *IEEE Trans. Medical Imaging*, vol. 37, no. 6, pp. 1440-1453, 2018.
- M. Unser, "A representer theorem for deep neural networks," *J. Machine Learning Research*, vol. 20, pp. 1-30, Jul.
- Preprints and demos: http://bigwww.epfl.ch/

Sketch of proof

$$\min_{(\mathbf{U}_{\ell}), (\boldsymbol{\sigma}_{\boldsymbol{n},\boldsymbol{\ell}} \in \mathrm{BV}^{(2)}(\mathbb{R}))} \left(\sum_{m=1}^{M} E \big(\boldsymbol{y}_{m}, \mathbf{f}(\boldsymbol{x}_{m}) \big) \right. \\ \left. + \mu \sum_{\ell=1}^{N} R_{\ell}(\mathbf{U}_{\ell}) + \lambda \sum_{\ell=1}^{L} \sum_{n=1}^{N_{\ell}} \mathrm{TV}^{(2)}(\boldsymbol{\sigma}_{\boldsymbol{n},\boldsymbol{\ell}}) \right)$$

Optimal solution $\tilde{\mathbf{f}} = \tilde{\boldsymbol{\sigma}}_L \circ \tilde{\boldsymbol{\ell}}_L \circ \tilde{\boldsymbol{\sigma}}_{L-1} \circ \cdots \circ \tilde{\boldsymbol{\ell}}_2 \circ \tilde{\boldsymbol{\sigma}}_1 \circ \tilde{\boldsymbol{\ell}}_1$ with optimized weights $\tilde{\mathbf{U}}_{\ell}$ and neuronal activations $\tilde{\boldsymbol{\sigma}}_{n,\ell}$.

Apply "optimal" network $ilde{\mathbf{f}}$ to each data point $oldsymbol{x}_m$:

$$ullet$$
 Initialization (input): $ilde{m{y}}_{m,0}=m{x}_m.$

$$\begin{split} \bullet \ \ \text{For} \ \ell &= 1, \dots, L \\ \boldsymbol{z}_{m,\ell} &= (z_{1,m,\ell}, \dots, z_{N_\ell,m,\ell}) = \check{\mathbf{U}}_\ell \ \check{\boldsymbol{y}}_{m,\ell-1} \\ \check{\boldsymbol{y}}_{m,\ell} &= (\tilde{y}_{1,m,\ell}, \dots, \tilde{y}_{N_\ell,m,\ell}) \in \mathbb{R}^{N_\ell} \\ \text{with} \ \check{y}_{n,m,\ell} &= \check{\boldsymbol{\sigma}}_{n,\ell}(z_{n,m,\ell}) \quad n = 1, \dots, N_\ell. \end{split}$$

 \Rightarrow $\tilde{\mathbf{f}}(\boldsymbol{x}_m) = \tilde{\boldsymbol{y}}_{m,L}$

This fixes two terms of minimal criterion: $\sum_{m=1}^M E(\boldsymbol{y}_m, \tilde{\boldsymbol{y}}_{m,L})$ and $\sum_{\ell=1}^L R_\ell(\tilde{\mathbf{U}}_\ell)$.

 $\tilde{\mathbf{f}}$ achieves global optimum

$$\Leftrightarrow \quad \tilde{\sigma}_{n,\ell} = \arg\min_{f \in \mathrm{BV}^{(2)}(\mathbb{R})} \|\mathrm{D}^2 f\|_{\mathcal{M}} \quad \text{s.t.} \quad f(z_{n,m,\ell}) = \tilde{y}_{n,m,\ell}, \ m = 1, \dots, M$$