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Early crystallization in deep learning

Setup:

▶ Dataset of pairs (xi, yi)

▶ Neural Network ŷi = f(xi,θ) with parameters θ ∈ RD

▶ Loss L(θ) =
∑

i ℓ(yi, f(xi,θ)) ∈ R≥0 with gradient g ∈ RD and Hessian H ∈ RD×D

Early crystallization of parameters:

▶ Parameters can be pruned (Blalock et al. 2020)
▶ Pruning masks θ ⊙ m appear early in training

(Frankle et al. 2019)
▶ Magnitude pruning masks don’t change much

during training! (You et al. 2020)

Early crystallization of loss landscape:

▶ H is rank-defficient, i.e. H ≈ UtopΛtopU⊤top (e.g.
Sagun et al. 2018)

▶ g resides mostly in Utop (Gur-Ari et al. 2019)
▶ span(Utop) doesn’t change much during

training! (Gur-Ari et al. 2019)

Are those connected?Cheap! Expensive!
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Research questions and contributions

Questions:

▶ Can this similarity be measured? If so, how?

▶ What similarity can be considered high? What are the implications?

Contributions:

▶ Methodology to compare arbitrary k-parameter masks to top-k Hessian eigenspaces

▶ Algorithm and code to perform said measurements at scale→ Hessian eigendecompositions

▶ In DL, connection is orders of magnitude larger than random

▶ Potential implications for pruning, optimization, UQ and loss landscape analysis
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Comparing parameters with Hessian subspaces

Top-k parameter pruning is a projection onto ID,k:

P⊤(mk⊙θ) = m̃k⊙θ̃ =

(
Ik 0
0 0

)
θ̃ =: ID,kI⊤D,kθ̃

Also recall the top-k eigenbasis Utop:

H=
(

Utop Ubulk

) Dtop

Dbulk≈0

 U⊤top
U⊤bulk



▶ We have same-shape, orthogonal matrices ID,k and Utop

▶ Grassmannian metricsmeasure the distance between their spaces

▶ Theoretical and empirical analysis of several Grassmannian metrics

▶ The overlapmetric is stable and has a random baseline value of k
D :

1
k
∥I⊤D,kUtop∥2F ∈ [0, 1] (higher ⇐⇒ more similar)
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Computing the EIGH via sketched methods

▶ Computing overlap requires top-k Hessian eigendecomposition 1
k∥I

⊤
D,kUtop∥2F

▶ Intractable: O(D2)memory,O(D3) arithmetic (Golub et al. 2013)

▶ Expensive measurements: Each w = Hv costs 2 forward+backpropagations (Pearlmutter 1994)

▶ Sketched methods: O(k) parallelmeasurements,O(Dk)memory (Halko et al. 2011)

▶ PyTorch library: skerch
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High overlap in DL

10−6

10−4

10−2

Step: 2000

CIFAR-10

Sketched Overlap (Test)
Sketched Overlap (Train)
Random Baseline

10−5

10−3

CIFAR-100

10−6

10−4

ImageNet

10−6

10−4

10−2

Step: 4000
10−5

10−3

10−6

10−4

0 200 400 600 800 1000

k

10−6

10−4

10−2

Step: 8000

0 200 400 600 800 1000

k

10−5

10−3

0 500 1000 1500

k

10−6

10−4

▶ Scalable: Rank-1500 eigendecompositions on 12M-parameter networks
▶ Orders of magnitude higher for all observed splits, steps, rank sizes and problems
▶ Parameter inspection cheaply informs about curvature→ training, pruning, UQ, analysis
▶ Still, spaces are far from identical ( kD is small), so no direct mapping
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Thank you!

Conclusions:

▶ Grassmannian metrics to compare arbitrary parameters and Hessian eigenspaces

▶ Sketched eigendecompositions to measure overlap at scale→ skerch

▶ DL overlap orders-of-magnitude larger than baseline (albeit far from identical)

▶ Connecting expensive Hessian quantities with cheap parameter observations

Future work:

▶ Scalability: We also explore faster alternatives like perturbation-based and GGN

▶ Explaining why do we observe high overlap

▶ Leveraging this effect in downstream applications
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