Numerical Differentiation

We assume that we can compute a function f, but that we have no information about how to compute f^{\prime}. We want ways of estimating $f^{\prime}(x)$, given what we know about f.

Reminder: definition of differentiation:

$$
\frac{d f}{d x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

For second derivatives, we have the definition:

$$
\frac{d^{2} f}{d x^{2}}=\lim _{\Delta x \rightarrow 0} \frac{f^{\prime}(x+\Delta x)-f^{\prime}(x)}{\Delta x}
$$

Second Derivative

The simplest way is to get a symmetrical equation about x by using both the forward and backward differences to estimate $f^{\prime}(x+\Delta x)$ and $f^{\prime}(x)$ respectively:

$$
f^{\prime \prime}(x) \approx \frac{D_{+}(h)-D_{-}(h)}{h}=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}}
$$

Error Estimation in Differentiation II

We don't know the value of either $f^{\prime \prime}$ or ξ, but we can say that the error is order h :

$$
R_{T} \text { for } D_{+}(h) \text { is } O(h)
$$

so the error is proportional to the step size - as one might naively expect.
For $D_{-}(h)$ we get a similar result for the truncation error - also $O(h)$.

First Derivative

We can use this formula, by taking Δx equal to some small value h, to get the following approximation,

- known as the Forward Difference $\left(D_{+}(h)\right)$:

$$
f^{\prime}(x) \approx D_{+}(h)=\frac{f(x+h)-f(x)}{h}
$$

- Alternatively we could use the interval on the other side of x, to get the Backward Difference ($D_{-}(h)$) :

$$
f^{\prime}(x) \approx D_{-}(h)=\frac{f(x)-f(x-h)}{h}
$$

- A more symmetric form, the Central Difference $\left(D_{0}(h)\right)$, uses intervals on either side of x :

$$
f^{\prime}(x) \approx D_{0}(h)=\frac{f(x+h)-f(x-h)}{2 h}
$$

All of these give (different) approximations to $f^{\prime}(x)$.

Error Estimation in Differentiation I
We shall see that the error involved in using these differences is a form of truncation error $\left(R_{T}\right)$:

$$
\begin{aligned}
R_{T} & =D_{+}(h)-f^{\prime}(x) \\
& =\frac{1}{h}(f(x+h)-f(x))-f^{\prime}(x)
\end{aligned}
$$

Using Taylor's Theorem: $f(x+h)=f(x)+f^{\prime}(x) h+f^{\prime \prime}(x) h^{2} / 2!+f^{(3)}(x) h^{3} / 3!+\cdots$:

$$
\begin{aligned}
R_{T} & =\frac{1}{h}\left(f^{\prime}(x) h+f^{\prime \prime}(x) h^{2} / 2!+f^{\prime \prime \prime}(x) h^{3} / 3!+\cdots\right)-f^{\prime}(x) \\
& \left.=\frac{1}{h} f^{\prime}(x) h+\frac{1}{h}\left(f^{\prime \prime}(x) h^{2} / 2!+f^{\prime \prime \prime}(x) h^{3} / 3!+\cdots\right)\right)-f^{\prime}(x) \\
& =f^{\prime \prime}(x) h / 2!+f^{\prime \prime \prime}(x) h^{2} / 3!+\cdots
\end{aligned}
$$

Using the Mean Value Theorem, for some ξ within h of x :

$$
R_{T}=\frac{f^{\prime \prime}(\xi) \cdot h}{2}
$$

Exercise: differentiation I

Limit of the Difference Quotient. Consider the function $f(x)=e^{x}$.
(1) compute $f^{\prime}(1)$ using the sequence of approximation for the derivative:

$$
D_{k}=\frac{f\left(x+h_{k}\right)-f(x)}{h_{k}}
$$

with $h_{k}=10^{-k}, \quad k \geq 1$
(2) for which value k do you have the best precision (knowing $e^{1}=2.71828182845905$). Why?

Exercise: differentiation II
(1) xls/Lect13.xls
(2) Best precision at $k=8$. When h_{k} is too small, $f(1)$ and $f\left(1+h_{k}\right)$ are very close together. The difference $f\left(1+h_{k}\right)-f(1)$ can exhibit the problem of loss of significance due to the substraction of quantities that are nearly equal.

Central Difference

- we have looked at approximating $f^{\prime}(x)$ with the backward $D_{-}(h)$ and forward difference $D_{+}(h)$.
- Now we just check out the approximation with the central difference:

$$
f^{\prime}(x) \simeq D_{0}(h)=\frac{f(x+h)-f(x-h)}{2 h}
$$

- Richardson extrapolation

Error analysis of Central Difference II

We see that the difference can be written as

$$
D_{0}(h)=f^{\prime}(x)+\frac{f^{\prime \prime}(x)}{6} h^{2}+\frac{f^{(4)}(x)}{24}+\cdots
$$

or alternatively, as

$$
D_{0}(h)=f^{\prime}(x)+b_{1} h^{2}+b_{2} h^{4}+\cdots
$$

where be know how to compute b_{1}, b_{2}, etc.

We see that the error $R_{T}=D_{0}(h)-f^{\prime}(x)$ is $O\left(h^{2}\right)$.

Remark. Remember: for D_{-}and D_{+}, the error is $O(h)$.

Rounding Error in Difference Equations I

- When presenting the iterative techniques for root-finding, we ignored rounding errors, and paid no attention to the potential error problems with performing subtraction. This did not matter for such techniques because:
(1) the techniques are self-correcting, and tend to cancel out the accumulation of rounding errors
(2) the iterative equation $x_{n+1}=x_{n}-c_{n}$ where c_{n} is some form of correction factor has a subtraction which is safe because we are subtracting a small quantity (c_{n}) from a large one (e.g. for Newton-Raphson, $c_{n}=\frac{f(x)}{f^{\prime}(x)}$).

Rounding Error in Difference Equations II

- However, when using a difference equation like

$$
D_{0}(h)=\frac{f(x+h)-f(x-h)}{2 h}
$$

we seek a situation where h is small compared to everything else, in order to get a good approximation to the derivative. This means that $x+h$ and $x-h$ are very similar in magnitude, and this means that for most f (well-behaved) that $f(x+h)$ will be very close to $f(x-h)$. So we have the worst possible case for subtraction: the difference between two large quantities whose values are very similar.

- We cannot re-arrange the equation to get rid of the subtraction, as this difference is inherent in what it means to compute an approximation to a derivative (differentiation uses the concept of difference in a deeply intrinsic way).

Rounding Error in Difference Equations III

- We see now that the total error in using $D_{0}(h)$ to estimate $f^{\prime}(x)$ has two components
(1) the truncation error R_{T} which we have already calculated,
(2) and a function calculation error $R_{X F}$ which we now examine.
- When calculating $D_{0}(h)$, we are not using totally accurate computations of f, but instead we actually compute an approximation \bar{f}, to get

$$
\bar{D}_{0}(h)=\frac{\bar{f}(x+h)-\bar{f}(x-h)}{2 h}
$$

- We shall assume that the error in computing f near to x is bounded in magnitude by ϵ :

$$
|\bar{f}(x)-f(x)| \leq \epsilon
$$

Rounding Error in Difference Equations IV

- The calculation error is then given as

$$
\begin{aligned}
R_{X F} & =\bar{D}_{0}(h)-D_{0}(h) \\
& =\frac{\bar{f}(x+h)-\bar{f}(x-h)}{2 h}-\frac{f(x+h)-f(x-h)}{2 h} \\
& =\frac{\bar{f}(x+h)-\bar{f}(x-h)-(f(x+h)-f(x-h))}{2 h} \\
& =\frac{\bar{f}(x+h)-f(x+h)-(\bar{f}(x-h)-f(x-h))}{2 h} \\
\left|R_{X F}\right| & \leq \frac{|\bar{f}(x+h)-f(x+h)|+|\bar{f}(x-h)-f(x-h)|}{2 h} \\
& \leq \frac{\epsilon+\epsilon}{2 h} \\
& \leq \frac{\epsilon}{h}
\end{aligned}
$$

So we see that $R_{X F}$ is proportional to $1 / h$, so as h shrinks, this error grows, unlike R_{T} which shrinks quadratically as h does.

Rounding Error in Difference Equations V

- We see that the total error R is bounded by $\left|R_{T}\right|+\left|R_{X F}\right|$, which expands out to

$$
|R| \leq\left|\frac{f^{\prime \prime \prime}(\xi)}{6} h^{2}\right|+\left|\frac{\epsilon}{h}\right|
$$

So we see that to minimise the overall error we need to find the value of $h=h_{\text {opt }}$ which minimises the following expression:

$$
\frac{f^{\prime \prime \prime}(\xi)}{6} h^{2}+\frac{\epsilon}{h}
$$

Unfortunately, we do not know $f^{\prime \prime \prime}$ or ξ !
Many techniques exist to get a good estimate of $h_{\text {opt }}$, most of which estimate $f^{\prime \prime \prime}$ numerically somehow. These are complex and not discussed here.

Richardson Extrapolation II

The righthand side of this equation is simply $D_{0}(h)-f^{\prime}(x)$, so we can substitute to get

$$
\frac{D_{0}(2 h)-D_{0}(h)}{3}=D_{0}(h)-f^{\prime}(x)+O\left(h^{4}\right)
$$

This re-arranges (carefully) to obtain

$$
\begin{aligned}
f^{\prime}(x) & =D_{0}(h)+\frac{D_{0}(h)-D_{0}(2 h)}{3}+O\left(h^{4}\right) \\
& =\frac{4 D_{0}(h)-D_{0}(2 h)}{3}+O\left(h^{4}\right)
\end{aligned}
$$

Richardson Extrapolation II

- It is an estimate for $f^{\prime}(x)$ whose truncation error is $O\left(h^{4}\right)$, and so is an improvement over D_{0} used alone.
- This technique of using calculations with different h values to get a better estimate is known as Richardson Extrapolation.

Richardson's Extrapolation.

Suppose that we have the two approximations $D_{0}(h)$ and $D_{0}(2 h)$ for $f^{\prime}(x)$, then an improved approximation has the form:

$$
f^{\prime}(x)=\frac{4 D_{0}(h)-D_{0}(2 h)}{3}+O\left(h^{4}\right)
$$

Solving Differential Equations Numerically

Definition.

The Initial value Problem deals with finding the solution $y(x)$ of

$$
y^{\prime}=f(x, y) \quad \text { with the initial condition } \quad y\left(x_{0}\right)=y_{0}
$$

- It is a 1 st order differential equations (D.E.s)
- Alternative ways of writing $y^{\prime}=f(x, y)$ are:

$$
\begin{aligned}
y^{\prime}(x) & =f(x, y) \\
\frac{d y(x)}{d x} & =f(x, y)
\end{aligned}
$$

Summary

- Approximation for numerical differentiation:

Approximation for $f^{\prime}(x)$	Error
Forward/backward difference D_{+}, D_{-}	$O(h)$
Central difference D_{0}	$O\left(h^{2}\right)$
Richardson Extrapolation	$O\left(h^{4}\right)$

- Considering the total error (approximation error + calculation error):

$$
|R| \leq\left|\frac{f^{\prime \prime \prime}(\xi)}{6} h^{2}\right|+\left|\frac{\epsilon}{h}\right|
$$

remember that h should not be chosen too small.

Working Example

- We shall take the following D.E. as an example:

$$
f(x, y)=y
$$

or $y^{\prime}=y\left(\right.$ or $\left.y^{\prime}(x)=y(x)\right)$.

- This has an infinite number of solutions:

$$
y(x)=C \cdot e^{x} \quad \forall C \in \mathbb{R}
$$

- We can single out one solution by supplying an initial condition $y\left(x_{0}\right)=y_{0}$.
- So, in our example, if we say that $y(0)=1$, then we find that $C=1$ and out solution is

$$
y=e^{x}
$$

The Lipschitz Condition I

We can give a condition that determines when the initial condition is sufficient to ensure a unique solution, known as the Lipschitz Condition.

Lipschitz Condition:
For $a \leq x \leq b$, for all $-\infty<y, y^{*}<\infty$, if there is an L such that

$$
\left|f(x, y)-f\left(x, y^{*}\right)\right| \leq L\left|y-y^{*}\right|
$$

Then the solution to $y^{\prime}=f(x, y)$ is unique, given an initial condition.

- L is often referred to as the Lipschitz Constant.
- A useful estimate for L is to take $\left|\frac{\partial f}{\partial y}\right| \leq L$, for x in (a, b).

The dashed lines show the many solutions for different values of C. The solid line shows the solution singled out by the initial condition that $y(0)=1$.

The Lipschitz Condition II

Example.

given our example of $y^{\prime}=y=f(x, y)$, then we can see do we get a suitable L.

$$
\begin{aligned}
\frac{\partial f}{\partial y} & =\frac{\partial(y)}{\partial(y)} \\
& =1
\end{aligned}
$$

So we shall $\operatorname{try} L=1$

$$
\begin{aligned}
\left|f(x, y)-f\left(x, y^{*}\right)\right| & =\left|y-y^{*}\right| \\
& \leq 1 \cdot\left|y-y^{*}\right|
\end{aligned}
$$

So we see that we satisfy the Lipschitz Condition with a Constant $L=1$.

Euler's Method

- The technique works by using applying f at the current point $\left(x_{n}, y_{n}\right)$ to get an estimate of y^{\prime} at that point.

Euler's Method.

This is then used to compute y_{n+1} as follows:

$$
y_{n+1}=y_{n}+h \cdot f\left(x_{n}, y_{n}\right)
$$

This technique for solving D.E.'s is known as Euler's Method.

- It is simple, slow and inaccurate, with experimentation showing that the error is $O(h)$.

Numerically solving $y^{\prime}=f(x, y)$

- We assume we are trying to find values of y for x ranging over the interval $[a, b]$.
- We start with the one point where we have the exact answer, namely the initial condition $y_{0}=y\left(x_{0}\right)$.
- We generate a series of x -points from $a=x_{0}$ to b, separated by a small step-interval h :

$$
\begin{aligned}
& x_{0}=a \\
& \left\lvert\, \begin{array}{c}
x_{i}=a+i \cdot h \\
h=\frac{b-a}{N} \\
x_{N}=b
\end{array}\right.
\end{aligned}
$$

- we want to compute $\left\{y_{i}\right\}$, the approximations to $\left\{y\left(x_{i}\right)\right\}$, the true values.

Euler's Method

Example.

In our example, we have

$$
y^{\prime}=y \quad f(x, y)=y \quad y_{n+1}=y_{n}+h \cdot y_{n}
$$

At each point after x_{0}, we accumulate an error, because we are using the slope at x_{n} to estimate y_{n+1}, which assumes that the slope doesn't change over interval $\left[x_{n}, x_{n+1}\right]$.

Truncation Errors I

Definitions.

- The error introduced at each step is called the Local Truncation Error.
- The error introduced at any given point, as a result of accumulating all the local truncation errors up to that point, is called the Global Truncation Error.

In the diagram above, the local truncation error is $y\left(x_{n+1}\right)-y_{n+1}$.

Truncation Errors II

We can estimate the local truncation error $y\left(x_{n+1}\right)-y_{n+1}$, by assuming the value y_{n} for x_{n} is exact as follows: as follows:

$$
y\left(x_{n+1}\right)=y\left(x_{n}+h\right)
$$

Using Taylor Expansion about $x=x_{n}$

$$
y\left(x_{n+1}\right)=y\left(x_{n}\right)+h y^{\prime}\left(x_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}(\xi)
$$

Assuming y_{n} is exact $\left(y_{n}=y\left(x_{n}\right)\right)$, so $y^{\prime}\left(x_{n}\right)=f\left(x_{n}, y_{n}\right)$

$$
y\left(x_{n+1}\right)=y_{n}+h f\left(x_{n}, y_{n}\right)+\frac{h^{2}}{2} y^{\prime \prime}(\xi)
$$

Now looking at y_{n+1} by definition of the Euler method:

$$
y_{n+1}=y_{n}+h f\left(x_{n}, y_{n}\right)
$$

We subtract the two results:

$$
y\left(x_{n+1}\right)-y_{n+1}=-\frac{h^{2}}{2} y^{\prime \prime}(\xi)
$$

Truncation Errors III

So

$$
y\left(x_{n+1}\right)-y_{n+1} \propto O\left(h^{2}\right)
$$

- We saw that the local truncation error for Euler's Method is $O\left(h^{2}\right)$.
- By integration (accumulation of error when starting from x_{0}), we see that global error is $O(h)$.

As a general principle, we find that if the Local Truncation Error is $O\left(h^{p+1}\right)$, then the Global Truncation Error is $O\left(h^{p}\right)$.

Introduction

Considering the problem of solving differential equations with one initial condition, we learnt about:

- Lipschitz Condition (unicity of the solution)
- finding numerically the solution : Euler method

Today is about how to improve the Euler's algorithm:

- Heun's method
- and more generally Runge-Kutta's techniques

Improved Differentiation Techniques I

We can improve on Euler's technique to get better estimates for y_{n+1}. The idea is to use the equation $y^{\prime}=f(x, y)$ to estimate the slope at x_{n+1} as well, and then average these two slopes to get a better result.

Improved Differentiation Techniques III

So considering the two approximations of $\frac{y_{n+1}-y_{n}}{h}$ with expressions (A) and (B), we get a better approximation by averaging (ie. by computing $\mathrm{A}+\mathrm{B} / 2$):

$$
\frac{y_{n+1}-y_{n}}{h} \simeq \frac{1}{2} \cdot\left(f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{(e)}\right)\right.
$$

Heun's Method
The approximation

$$
\begin{aligned}
y_{n+1} & =y_{n}+\frac{h}{2} \cdot\left(f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n+1}^{(e)}\right)\right. \\
& =y_{n}+\frac{h}{2} \cdot\left(f\left(x_{n}, y_{n}\right)+f\left(x_{n+1}, y_{n}+h \cdot f\left(x_{n}, y_{n}\right)\right)\right.
\end{aligned}
$$

is known as Heun's Method.
It can be shown to have a global truncation error that is $O\left(h^{2}\right)$. The cost of this improvement in error behaviour is that we evaluate f twice on each h-step.

Improved Differentiation Techniques II

- Using the slope $y^{\prime}\left(x_{n}, y_{n}\right)=f\left(x_{n}, y_{n}\right)$ at x_{n}, the Euler approximation is:
(A) $\frac{y_{n+1}-y_{n}}{h} \simeq f\left(x_{n}, y_{n}\right)$
- Considering the slope $y^{\prime}\left(x_{n+1}, y_{n+1}\right)=f\left(x_{n+1}, y_{n+1}\right)$ at x_{n+1}, we can propose this new approximation:
(B) $\quad \frac{y_{n+1}-y_{n}}{h} \simeq f\left(x_{n+1}, y_{n+1}\right)$
- The trouble is: we dont know y_{n+1} in f (because this is what we are looking for!).
- So instead we use $y_{n+1}^{(e)}$ the Euler's approximation of y_{n+1} :
(B) $\quad \frac{y_{n+1}-y_{n}}{h} \simeq f\left(x_{n+1}, y_{n+1}^{(e)}\right)$

Runge-Kutta Techniques I

- We can repeat the Heun's approach by considering the approximations of slopes in the interval $\left[x_{n} ; x_{n+1}\right]$.
- This leads to a large class of improved differentiation techniques which evaluate f many times at each h-step, in order to get better error performance.
- This class of techniques is referred to collectively as Runge-Kutta techniques, of which Heun's Method is the simplest example.
- The classical Runge-Kutta technique evaluates f four times to get a method with global truncation error of $O\left(h^{4}\right)$.

Runge-Kutta Techniques II

Runge-Kutta's technique using 4 approximations
It is computed using approximations of the slope at x_{n}, x_{n+1} and also two approximations at mid interval $x_{n}+\frac{h}{2}$:

$$
\frac{y_{n+1}-y_{n}}{h}=\frac{1}{6}\left(f_{1}+2 \cdot f_{2}+2 \cdot f_{3}+f_{4}\right)
$$

with

$$
\begin{aligned}
& f_{1}=f\left(x_{n}, y_{n}\right) \\
& f_{2}=f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f_{1}\right) \\
& f_{3}=f\left(x_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} f_{2}\right) \\
& f_{4}=f\left(x_{n+1}, y_{n}+h \cdot f_{3}\right)
\end{aligned}
$$

It can be shown that the global truncation error is $O\left(h^{4}\right)$

