
Numerical Differentiation

We assume that we can compute a function f , but that we have no information about

how to compute f ′. We want ways of estimating f ′(x), given what we know about f .

Reminder: definition of differentiation:

df

dx
= lim

∆x→0

f (x + ∆x)− f (x)

∆x

For second derivatives, we have the definition:

d2f

dx2
= lim

∆x→0

f ′(x + ∆x)− f ′(x)

∆x

First Derivative

We can use this formula, by taking ∆x equal to some small value h, to get the following

approximation,

known as the Forward Difference (D+(h)):

f ′(x) ≈ D+(h) =
f (x + h)− f (x)

h

Alternatively we could use the interval on the other side of x, to get the Backward

Difference (D−(h)) :

f ′(x) ≈ D−(h) =
f (x)− f (x− h)

h

A more symmetric form, the Central Difference (D0(h)), uses intervals on either

side of x:

f ′(x) ≈ D0(h) =
f (x + h)− f (x− h)

2h

All of these give (different) approximations to f ′(x).

Second Derivative

The simplest way is to get a symmetrical equation about x by using both the forward

and backward differences to estimate f ′(x + ∆x) and f ′(x) respectively:

f ′′(x) ≈
D+(h)−D−(h)

h
=

f (x + h)− 2f (x) + f (x− h)

h2

Error Estimation in Differentiation I

We shall see that the error involved in using these differences is a form of truncation

error (RT):

RT = D+(h)− f ′(x)

= 1

h (f (x + h)− f (x))− f ′(x)

Using Taylor’s Theorem: f (x + h) = f (x) + f ′(x)h + f ′′(x)h2/2! + f (3)(x)h3/3! + · · · :

RT = 1

h (f ′(x)h + f ′′(x)h2/2! + f ′′′(x)h3/3! + · · ·)− f ′(x)

= 1

h f ′(x)h + 1

h (f ′′(x)h2/2! + f ′′′(x)h3/3! + · · ·))− f ′(x)

= f ′′(x)h/2! + f ′′′(x)h2/3! + · · ·

Using the Mean Value Theorem, for some ξ within h of x:

RT =
f ′′(ξ) · h

2

Error Estimation in Differentiation II

We don’t know the value of either f ′′ or ξ, but we can say that the error is order h:

RT for D+(h) is O(h)

so the error is proportional to the step size — as one might naively expect.

For D−(h) we get a similar result for the truncation error — also O(h).

Exercise: differentiation I

Limit of the Difference Quotient. Consider the function f (x) = ex.

1 compute f ′(1) using the sequence of approximation for the derivative:

Dk =
f (x + hk)− f (x)

hk

with hk = 10
−k, k ≥ 1

2 for which value k do you have the best precision (knowing e1 = 2.71828182845905).

Why?

Exercise: differentiation II

1 xls/Lect13.xls

2 Best precision at k = 8. When hk is too small, f (1) and f (1 + hk) are very close

together. The difference f (1 + hk)− f (1) can exhibit the problem of loss of

significance due to the substraction of quantities that are nearly equal.

Central Difference

we have looked at approximating f ′(x) with the backward D−(h) and forward

difference D+(h).

Now we just check out the approximation with the central difference:

f ′(x) ≃ D0(h) =
f (x + h)− f (x− h)

2h

Richardson extrapolation

Error analysis of Central Difference I

We consider the error in the Central Difference estimate (D0(h)) of f ′(x):

D0(h) =
f (x + h)− f (x− h)

2h

We apply Taylor’s Theorem,

f (x + h) = f (x) + f ′(x)h +
f ′′(x)h2

2!
+

f ′′′(x)h3

3!
+

f (4)(x)h4

4!
+ · · · (A)

f (x− h) = f (x)− f ′(x)h +
f ′′(x)h2

2!
−

f ′′′(x)h3

3!
+

f (4)(x)h4

4!
+ · · · (B)

(A)− (B) = 2f ′(x)h + 2
f ′′′(x)h3

3!
+ 2

f (5)(x)h5

5!
+ · · ·

(A)− (B)

2h
= f ′(x) +

f ′′′(x)h2

3!
+

f (5)(x)h4

5!
+ · · ·

Error analysis of Central Difference II

We see that the difference can be written as

D0(h) = f ′(x) +
f ′′(x)

6
h2 +

f (4)(x)

24
+ · · ·

or alternatively, as

D0(h) = f ′(x) + b1h2 + b2h4 + · · ·

where be know how to compute b1, b2, etc.

We see that the error RT = D0(h)− f ′(x) is O(h2).

Remark. Remember: for D− and D+, the error is O(h).

Error analysis of Central Difference III

Example.

Let try again the example:

f (x) = ex f ′(x) = ex

We evaluate f ′(1) = e1 ≈ 2.71828... with

D0(h) =
f (1 + h)− f (1− h)

2h

for h = 10
−k, k ≥ 1.

Numerical values: xls/Lect13.xls

Rounding Error in Difference Equations I

When presenting the iterative techniques for root-finding, we ignored rounding

errors, and paid no attention to the potential error problems with performing

subtraction. This did not matter for such techniques because:

1 the techniques are self-correcting, and tend to cancel out the accumulation of rounding

errors

2 the iterative equation xn+1 = xn − cn where cn is some form of correction factor has a

subtraction which is safe because we are subtracting a small quantity (cn) from a large

one (e.g. for Newton-Raphson, cn = f (x)
f ′(x)

).

Rounding Error in Difference Equations II

However, when using a difference equation like

D0(h) =
f (x + h)− f (x− h)

2h

we seek a situation where h is small compared to everything else, in order to get a

good approximation to the derivative. This means that x + h and x− h are very

similar in magnitude, and this means that for most f (well-behaved) that f (x + h)

will be very close to f (x− h). So we have the worst possible case for subtraction:

the difference between two large quantities whose values are very similar.

We cannot re-arrange the equation to get rid of the subtraction, as this difference

is inherent in what it means to compute an approximation to a derivative

(differentiation uses the concept of difference in a deeply intrinsic way).

Rounding Error in Difference Equations III

We see now that the total error in using D0(h) to estimate f ′(x) has two

components

1 the truncation error RT which we have already calculated,

2 and a function calculation error RXF which we now examine.

When calculating D0(h), we are not using totally accurate computations of f , but

instead we actually compute an approximation f̄ , to get

D̄0(h) =
f̄ (x + h)− f̄ (x− h)

2h

We shall assume that the error in computing f near to x is bounded in magnitude

by ǫ:

|f̄ (x)− f (x)| ≤ ǫ

Rounding Error in Difference Equations IV

The calculation error is then given as

RXF = D̄0(h)−D0(h)

=
f̄ (x + h)− f̄ (x− h)

2h
−

f (x + h)− f (x− h)

2h

=
f̄ (x + h)− f̄ (x− h)− (f (x + h)− f (x− h))

2h

=
f̄ (x + h)− f (x + h)− (f̄ (x− h)− f (x− h))

2h

|RXF | ≤
|f̄ (x + h)− f (x + h)|+ |f̄ (x− h)− f (x− h)|

2h

≤
ǫ + ǫ

2h

≤
ǫ

h

So we see that RXF is proportional to 1/h, so as h shrinks, this error grows, unlike

RT which shrinks quadratically as h does.

Rounding Error in Difference Equations V

We see that the total error R is bounded by |RT |+ |RXF |, which expands out to

|R| ≤

∣

∣

∣

∣

f ′′′(ξ)

6
h2

∣

∣

∣

∣

+
∣

∣

∣

ǫ

h

∣

∣

∣

So we see that to minimise the overall error we need to find the value of h = hopt which

minimises the following expression:

f ′′′(ξ)

6
h2 +

ǫ

h

Unfortunately, we do not know f ′′′ or ξ !

Many techniques exist to get a good estimate of hopt, most of which estimate f ′′′

numerically somehow. These are complex and not discussed here.

Richardson Extrapolation I

The trick is to compute D0(h) for 2 different values of h, and combine the results in

some appropriate manner, as guided by our knowledge of the error behaviour.

In this case we have already established that

D0(h) =
f (x + h)− f (x− h)

2h
= f ′(x) + b1h2 + O(h4)

We now consider using twice the value of h:

D0(2h) =
f (x + 2h)− f (x− 2h)

4h
= f ′(x) + b14h2 + O(h4)

We can subtract these to get:

D0(2h)−D0(h) = 3b1h2 + O(h4)

We divide across by 3 to get:

D0(2h)−D0(h)

3
= b1h2 + O(h4)

Richardson Extrapolation II

The righthand side of this equation is simply D0(h)− f ′(x), so we can substitute to get

D0(2h)−D0(h)

3
= D0(h)− f ′(x) + O(h4)

This re-arranges (carefully) to obtain

f ′(x) = D0(h) + D0(h)−D0(2h)
3

+ O(h4)

= 4D0(h)−D0(2h)
3

+ O(h4)

Richardson Extrapolation III

It is an estimate for f ′(x) whose truncation error is O(h4), and so is an

improvement over D0 used alone.

This technique of using calculations with different h values to get a better estimate

is known as Richardson Extrapolation.

Richardson’s Extrapolation.

Suppose that we have the two approximations D0(h) and D0(2h) for f ′(x), then an

improved approximation has the form:

f ′(x) =
4D0(h)−D0(2h)

3
+ O(h4)

Summary

Approximation for numerical differentiation:

Approximation for f ′(x) Error

Forward/backward difference D+, D− O(h)

Central difference D0 O(h2)

Richardson Extrapolation O(h4)

Considering the total error (approximation error + calculation error):

|R| ≤

∣

∣

∣

∣

f ′′′(ξ)

6
h2

∣

∣

∣

∣

+
∣

∣

∣

ǫ

h

∣

∣

∣

remember that h should not be chosen too small.

Solving Differential Equations Numerically

Definition.

The Initial value Problem deals with finding the solution y(x) of

y′ = f (x, y) with the initial condition y(x0) = y0

It is a 1st order differential equations (D.E.s).

Alternative ways of writing y′ = f (x, y) are:

y′(x) = f (x, y)

dy(x)

dx
= f (x, y)

Working Example

We shall take the following D.E. as an example:

f (x, y) = y

or y′ = y (or y′(x) = y(x)).

This has an infinite number of solutions:

y(x) = C · ex ∀C ∈ R

We can single out one solution by supplying an initial condition y(x0) = y0.

So, in our example, if we say that y(0) = 1, then we find that C = 1 and out

solution is

y = ex

Working Example

x

y

1

15

2

10

3

5

20

30

25

1
0

- Initial Condition

The dashed lines show the many solutions for different values of C. The solid line

shows the solution singled out by the initial condition that y(0) = 1.

The Lipschitz Condition I

We can give a condition that determines when the initial condition is sufficient to

ensure a unique solution, known as the Lipschitz Condition.

Lipschitz Condition:

For a ≤ x ≤ b, for all −∞ < y, y∗ < ∞, if there is an L such that

|f (x, y)− f (x, y∗)| ≤ L |y− y∗|

Then the solution to y′ = f (x, y) is unique, given an initial condition.

L is often referred to as the Lipschitz Constant.

A useful estimate for L is to take
∣

∣

∣

∂f
∂y

∣

∣

∣
≤ L, for x in (a, b).

The Lipschitz Condition II

Example.

given our example of y′ = y = f (x, y), then we can see do we get a suitable L.

∂f

∂y
=

∂(y)

∂(y)

= 1

So we shall try L = 1

|f (x, y)− f (x, y∗)| = |y− y∗|

≤ 1 · |y− y∗|

So we see that we satisfy the Lipschitz Condition with a Constant L = 1.

Numerically solving y′ = f (x, y)

We assume we are trying to find values of y for x ranging over the interval [a, b].

We start with the one point where we have the exact answer, namely the initial

condition y0 = y(x0).

We generate a series of x-points from a = x0 to b, separated by a small

step-interval h:

x0 = a
∣

∣

∣

∣

∣

xi = a + i · h

h = b−a
N

xN = b

we want to compute {yi}, the approximations to {y(xi)}, the true values.

Euler’s Method

The technique works by using applying f at the current point (xn, yn) to get an

estimate of y′ at that point.

Euler’s Method.

This is then used to compute yn+1 as follows:

yn+1 = yn + h · f (xn, yn)

This technique for solving D.E.’s is known as Euler’s Method.

It is simple, slow and inaccurate, with experimentation showing that the error is

O(h).

Euler’s Method

Example.

In our example, we have

y′ = y f (x, y) = y yn+1 = yn + h · yn

At each point after x0, we accumulate an error, because we are using the slope at xn to

estimate yn+1, which assumes that the slope doesn’t change over interval [xn, xn+1].

Truncation Errors I

Definitions.

The error introduced at each step is called the Local Truncation Error.

The error introduced at any given point, as a result of accumulating all the local

truncation errors up to that point, is called the Global Truncation Error.

xn+1nx

yn
yn+1

y(x)n+1

In the diagram above, the local truncation error is y(xn+1)− yn+1.

Truncation Errors II

We can estimate the local truncation error y(xn+1)− yn+1, by assuming the value yn for

xn is exact as follows: as follows:

y(xn+1) = y(xn + h)

Using Taylor Expansion about x = xn

y(xn+1) = y(xn) + hy′(xn) +
h2

2
y′′(ξ)

Assuming yn is exact (yn = y(xn)), so y′(xn) = f (xn, yn)

y(xn+1) = yn + hf (xn, yn) +
h2

2
y′′(ξ)

Now looking at yn+1 by definition of the Euler method:

yn+1 = yn + hf (xn, yn)

We subtract the two results:

y(xn+1)− yn+1 = −
h2

2
y′′(ξ)

Truncation Errors III

So

y(xn+1)− yn+1 ∝ O(h2)

We saw that the local truncation error for Euler’s Method is O(h2).

By integration (accumulation of error when starting from x0), we see that global

error is O(h).

As a general principle, we find that if the Local Truncation Error is O(hp+1), then the

Global Truncation Error is O(hp).

Introduction

Considering the problem of solving differential equations with one initial condition, we

learnt about:

Lipschitz Condition (unicity of the solution)

finding numerically the solution : Euler method

Today is about how to improve the Euler’s algorithm:

Heun’s method

and more generally Runge-Kutta’s techniques.

Improved Differentiation Techniques I

We can improve on Euler’s technique to get better estimates for yn+1. The idea is to

use the equation y′ = f (x, y) to estimate the slope at xn+1 as well, and then average

these two slopes to get a better result.

xn+1nx

yn
yn+1
(e)

k1

k2

yn+1

0.5(k1+k2)

Improved Differentiation Techniques II

Using the slope y′(xn, yn) = f (xn, yn) at xn, the Euler approximation is:

(A)
yn+1 − yn

h
≃ f (xn, yn)

Considering the slope y′(xn+1, yn+1) = f (xn+1, yn+1) at xn+1 , we can propose this

new approximation:

(B)
yn+1 − yn

h
≃ f (xn+1, yn+1)

The trouble is: we dont know yn+1 in f (because this is what we are looking for!).

So instead we use y
(e)
n+1

the Euler’s approximation of yn+1:

(B)
yn+1 − yn

h
≃ f (xn+1, y

(e)
n+1

)

Improved Differentiation Techniques III

So considering the two approximations of yn+1−yn

h with expressions (A) and (B), we get

a better approximation by averaging (ie. by computing A+B/2):

yn+1 − yn

h
≃

1

2
·
(

f (xn, yn) + f (xn+1, y
(e)
n+1

)

Heun’s Method.

The approximation:

yn+1 = yn + h
2
·
(

f (xn, yn) + f (xn+1, y
(e)
n+1

)

= yn + h
2
· (f (xn, yn) + f (xn+1, yn + h · f (xn, yn))

is known as Heun’s Method.

It can be shown to have a global truncation error that is O(h2). The cost of this

improvement in error behaviour is that we evaluate f twice on each h-step.

Runge-Kutta Techniques I

We can repeat the Heun’s approach by considering the approximations of slopes

in the interval [xn; xn+1].

This leads to a large class of improved differentiation techniques which evaluate f

many times at each h-step, in order to get better error performance.

This class of techniques is referred to collectively as Runge-Kutta techniques, of

which Heun’s Method is the simplest example.

The classical Runge-Kutta technique evaluates f four times to get a method with

global truncation error of O(h4).

Runge-Kutta Techniques II

Runge-Kutta’s technique using 4 approximations.

It is computed using approximations of the slope at xn, xn+1 and also two

approximations at mid interval xn + h
2
:

yn+1 − yn

h
=

1

6
(f1 + 2 · f2 + 2 · f3 + f4)

with

f1 = f (xn, yn)

f2 = f
(

xn + h
2

, yn + h
2

f1

)

f3 = f
(

xn + h
2

, yn + h
2

f2

)

f4 = f (xn+1, yn + h · f3)

It can be shown that the global truncation error is O(h4).

