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Unsupervised Anomaly Detection (UAD)

Limited knowledge about anomalies → unsupervised task:
◮ Only non-anomalous (normal) data known.
◮ Detector provides anomaly score, then threshold.

Different UAD strategies (from [Koizumi20]). Only normal data (green) is known beforehand.
Common assumption: Normal data clustering around modes, anomalies further away.

Audio UAD:
◮ Useful in predictive maintenance of industrial machines[Carvalho19,

Grollmisch19].

◮ Sounds may overlap with variable signal-to-noise ratios.

◮ Anomalies may be given by short sounds or large sequences.
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UAD under domain-shift conditions (UAD-S)

Normal and anomalous data exposed to potentially unknown changes:

◮ Detector must embrace strong environmental changes.

◮ But still be sensitive to even slight anomalies.

UAD-S illustration. Maintaining the green boundary would result in false positives/negatives.
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UAD/UAD-S in DCASE

UAD (2020, Task 2)
◮ Machines intentionally

damaged for anomaly eval

data[MIMII, ToyAdmos].

◮ Evaluation: AUC and pAUC,

averaged over machines.

◮ DL dominated. Variety of

approaches with > 90%.

UAD-S (2021, Task 2)
◮ Larger dataset. Added target domain

with ∼ 0.3% training data[MIMII_DUE,

ToyAdmos2].

◮ Evaluation: AUC/pAUC, harmonic

mean over machines+domains.

◮ Results drastically lower (1st : 66.8%).

Development datasets for DCASE2021 (left) and 2020 (right). Images from [DCASE website].
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Motivation and Proposed Contributions

Why 2021 ≪ 2020?

◮ DL-based reconstruction approach from 2020 was barely present

in top ranks (exception: [Kuroyanagi21]).

◮ Instead, predominance of representation-learning methods.

◮ Established domain-shift techniques were attempted[Lopez21].

◮ Relative success of non-parametric inference methods[Morita21].

Literature hints at task difficulty independently of the approach, and

relevance of data representation. Plan: visually inspect data.

Proposed contributions

◮ Methodology+software using UMAP projections to visualize

audio data and find separability and discriminative support.

◮ Insights on micro- and macrostructure of the 2021 UAD-S dataset.

◮ Formulation of verifiable hypotheses to direct future efforts.
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UMAP and Dimensionality Reduction

Uniform Manifold Approximation and Projection (UMAP) is a scalable, stable

and meaningful projection technique[McInnes18]:

1. For each point, find radius based on distance to k ≥ 1 neighbours.

2. Compute radius-dependent distance and P(neigh) for neighbours.

3. Find low-dimensional graph with edges that minimize cross-entropy to

high-dimensional graph (e.g. via SGD):

∑

e∈E

attraction for high w
︷ ︸︸ ︷

wh(e)log

(
wh(e)

wle

)

+

repulsion for low w
︷ ︸︸ ︷

(1 − wh(e))log

(
1 − wh(e)

1 − wle

)

Main assumption:

If two regions appear separable on the projection, they are also

separable in the original domain. The converse is not necessarily true!
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Plotting UAD-S Audio Data

Based on our main assumption, 2 beneficial visual qualities:
◮ Separability (SEP): Simple boundary between normal and anomalous.

◮ Discriminative Support (DSUP): Training data covers normals, not

anomalies.

Excerpt from the UMAP plot for pump, illustrating different cases of SEP/DSUP.

We render global, per-device and per-split plots:

◮ Training data is shown equally on both sides.
◮ Normal test data is shown on the left, anomalies on the right.
◮ Representations: log-STFT, log-mel and L3[Arandjelovic17].
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Result Samples: Global Plot

◮ Clear distinction between ToyAdmos (teal, pink) and MIMII (rest).
◮ Generally, little observable difference between normals and

anomalies, and no evident anomalous patterns or regions.

1024-Log-STFT spectrogram→sample→UMAP of all devices.
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Result Samples: Device Plot+External Data

◮ AudioSet (L3 pretraining data) appears compact, rest scattered.

◮ ToyAdmos structures simpler than MIMII (e.g. ToyTrain below).

◮ Interesting cycles (circular train trajectory?).

OpenL3→sample→UMAP of the train device. Highlighted: noticeable anomalous patterns.
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Result Samples: Section Plot

◮ Individual clips can be inspected.

◮ Tip of the non-negative cone (i.e. zero amplitude) populated by

AudioSet.

128-Log-mel spectrogram→sample→UMAP of gearbox section 0.
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Discussion

Based on observations+literature, we propose these hypotheses:

1. Mixing ToyAdmos+MIMII may hinder performance[Primus20].

2. Temporal context+pretraining: tradeoff between SEP and DSUP.

3. Normalization is a dominating factor [Lopez21, Wilkinghoff21].

4. Incorporating domain-related priors may help performance (see image).

The 2021 DCASE dataset provides labels for the domain shifts.

We also present shortcomings and possible ways to address them:

◮ Computational limitations: Projecting, subsampling and stacking.

◮ Perceptual biases: Shapes, colors, amount of information.
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Thank You

◮ Conclusions:
1. Presented methodology+software tool for UAD-S analysis.

2. Revealed interesting properties of the dataset.

3. Proposed verifiable hypotheses based on plots and literature.

◮ Future Work:
1. Incorporate further representations and temporal relations.

2. Enhanced, interactive plot (sonification, highlighting).

3. Extension to supervised scenarios.

Come to our poster session! More info & resources:

https://ai4s.surrey.ac.uk/2021/dcase_uads
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