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Overview of Compressed Sensing (CS)

A powerful technique to represent signals at a sub-Nyquist
sampling rate, provided the signal is known to be sparse in
some domain.
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Overview of Compressed Sensing (CS)

A powerful technique to represent signals at a sub-Nyquist
sampling rate, provided the signal is known to be sparse in
some domain.

It retains the capacity of perfect (or near perfect)
reconstruction of the signal from fewer samples than provided
by Nyquist rate sampling.

In last few years, the CS technique has attracted considerable
attention from across a wide array of fields like

1 applied mathematics,
2 statistics, and
3 engineering including signal processing areas like

(i) MR imaging,
(ii) speech processing,
(iii) analog to digital conversion etc.
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Overview of CS (Cont.)

Basic CS Formulation:

Let a real valued, bandlimited signal u(t) be sampled
following Nyquist sampling rate condition and over a finite
observation interval, generating the observation vector:
u = (u1, u2, · · · , uN)T .
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Let a real valued, bandlimited signal u(t) be sampled
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observation interval, generating the observation vector:
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⇒ if Ψ: The N×N transform matrix (usually unitary) and,
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Basic CS Formulation:

Let a real valued, bandlimited signal u(t) be sampled
following Nyquist sampling rate condition and over a finite
observation interval, generating the observation vector:
u = (u1, u2, · · · , uN)T .

Further, u is known to be sparse in some transform domain

⇒ if Ψ: The N×N transform matrix (usually unitary) and,
x: Transform coefficient vector (∈ R

N), so that
u = Ψx,

then, x is K -sparse
⇒ a maximum of K no. of terms in x are non-zero.
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Overview of CS (Cont.)

Then, according to the CS theory, it is possible to recover u
from a fewer no., say, M (M < N) samples: y1, y2, · · · , yM ,
linearly related to u1, u2, · · · , uN as
y = Au = Φx, (Φ = AΨ)
where,
y = [y1, y2, · · · , yM ]T , and
A: A M × N sensing matrix.
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Then, according to the CS theory, it is possible to recover u
from a fewer no., say, M (M < N) samples: y1, y2, · · · , yM ,
linearly related to u1, u2, · · · , uN as
y = Au = Φx, (Φ = AΨ)
where,
y = [y1, y2, · · · , yM ]T , and
A: A M × N sensing matrix.

Ideal approach to recover x is by l0 minimization:

min
x∈RN

||x||0 subject to y = Φx. (1)

− It provides the sparsest solution for x.
− Uniqueness of the K -sparse solution requires that

every 2K columns of Φ should be linearly independent.
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Then, according to the CS theory, it is possible to recover u
from a fewer no., say, M (M < N) samples: y1, y2, · · · , yM ,
linearly related to u1, u2, · · · , uN as
y = Au = Φx, (Φ = AΨ)
where,
y = [y1, y2, · · · , yM ]T , and
A: A M × N sensing matrix.

Ideal approach to recover x is by l0 minimization:

min
x∈RN

||x||0 subject to y = Φx. (1)

− It provides the sparsest solution for x.
− Uniqueness of the K -sparse solution requires that

every 2K columns of Φ should be linearly independent.
But, it is a non-convex problem and is NP-hard.
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Overview of CS (Cont.)

More practical approaches using l1 norm (and above) can find
the desired K -sparse solution.

− But this requires Φ to satisfy certain “Restricted
Isometry Property (RIP)”.
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More practical approaches using l1 norm (and above) can find
the desired K -sparse solution.

− But this requires Φ to satisfy certain “Restricted
Isometry Property (RIP)”.

A matrix Φ is said to satisfy the RIP of order K if there exists
a ”Restricted Isometry Constant” δK ∈ (0, 1) so that

(1− δK ) ||x||22 6 ||Φx||22 6 (1 + δK ) ||x||22 (2)

for all K -sparse x.
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More practical approaches using l1 norm (and above) can find
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− But this requires Φ to satisfy certain “Restricted
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A matrix Φ is said to satisfy the RIP of order K if there exists
a ”Restricted Isometry Constant” δK ∈ (0, 1) so that
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More practical approaches using l1 norm (and above) can find
the desired K -sparse solution.

− But this requires Φ to satisfy certain “Restricted
Isometry Property (RIP)”.

A matrix Φ is said to satisfy the RIP of order K if there exists
a ”Restricted Isometry Constant” δK ∈ (0, 1) so that

(1− δK ) ||x||22 6 ||Φx||22 6 (1 + δK ) ||x||22 (2)

for all K -sparse x.
The constant δK is taken as the smallest number from (0, 1)
for which the RIP is satisfied.
If Φ satisfies RIP of order K , then it also satisfies RIP for any
order L where L < K and that δL ≥ δK .
Simple choice of random matrices for Φ can make it satisfy
RIP with high probability.
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CS Reconstruction Methods
Convex Relaxation:

It replaces the l0 norm in (1) by l1 norm to reduce the
problem to a convex problem.
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CS Reconstruction Methods
Convex Relaxation:

It replaces the l0 norm in (1) by l1 norm to reduce the
problem to a convex problem.

Three main directions under this category, namely the basis
pursuit (BP) , the basis pursuit de-noising (BPDN) and the
least absolute shrinkage and selection operator (LASSO):

1. BP: min
x∈RN

||x||1 subject to y = Φx (3)

2. BPDN: min
x∈RN

λ ||x||1 + ||r||22 s.t r = y −Φx (4)

3. LASSO: min
x∈RN

||y −Φx||22 s.t ||x||1 6 ǫ (5)
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Overview of CS (Cont.)

The BP problem can be solved by standard polynomial time
algorithms of linear programming (LP) methods.
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Overview of CS (Cont.)

The BP problem can be solved by standard polynomial time
algorithms of linear programming (LP) methods.

The exact K -sparse signal reconstruction by BP algorithm
based on RIP was first investigated by E. Candès et.al. (2006)
with the following bound on δK

δK + δ2K + δ3K < 1 (6)
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Later the bound was refined by S. Foucart (2010) as
δ2K < 0.4652.
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Mrityunjoy Chakraborty Generalized Orthogonal Matching Pursuit- A Review and Some



Overview of CS (Cont.)

The BP problem can be solved by standard polynomial time
algorithms of linear programming (LP) methods.

The exact K -sparse signal reconstruction by BP algorithm
based on RIP was first investigated by E. Candès et.al. (2006)
with the following bound on δK

δK + δ2K + δ3K < 1 (6)

Later the bound was refined by S. Foucart (2010) as
δ2K < 0.4652.

The BPDN and LASSO problems can be solved by efficient
quadratic programming (QP) like primal-dual interior method.

However, the regularization parameters λ and ǫ play a crucial
role in the performance of these algorithms.
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Overview of CS (Cont.)

Greedy Pursuits:

This approach recovers the K -sparse signal by iteratively
constructing the support set of the sparse signal (index of
non-zero elements in the sparse vector).
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Overview of CS (Cont.)

Greedy Pursuits:

This approach recovers the K -sparse signal by iteratively
constructing the support set of the sparse signal (index of
non-zero elements in the sparse vector).

At each iteration, it updates its support set by appending the
index of one or more columns (called atoms) of the matrix Φ
(often called dictionary) by some greedy principles based on
the correlation between current residual of observation vector
and the atoms.
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Overview of CS (Cont.)

Greedy Pursuits:

Few examples of greedy algorithms:

1 Orthogonal Matching Pursuit (OMP): δK+1 <
1

√

2K
2 Compressive Sampling Matching Pursuit(CoSaMP):δ4K < 0.1
3 Subspace Pursuit(SP): δ3K < 0.165
4 Iterative Hard Thresholding (IHT): δ3K < 1

√

32
≈ 0.177.

5 Generalized Orthogonal Matching Pursuit (gOMP):

δNK <
√

N
√

K+3
√

N
where N(≥ 1) is the number of atoms

selected by the gOMP algorithm in each iteration [1].
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Overview of CS (Cont.)

− OMP reconstructs the K -sparse signal in K steps by selecting
one atom in each iteration.
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Overview of CS (Cont.)

− OMP reconstructs the K -sparse signal in K steps by selecting
one atom in each iteration.

− CoSaMP and SP select a fixed number of atoms (2K in
CoSaMP and K in SP, for K -sparse signal) in each iteration
while keeping the provision of rejecting a previously selected
atom.
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− OMP reconstructs the K -sparse signal in K steps by selecting
one atom in each iteration.

− CoSaMP and SP select a fixed number of atoms (2K in
CoSaMP and K in SP, for K -sparse signal) in each iteration
while keeping the provision of rejecting a previously selected
atom.

− IHT uses gradient descent followed by a hard thresholding that
sets all but the K largest (in magnitude) elements in a vector
to zero.
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Generalized Orthogonal Matching Pursuit (gOMP)

The generalized orthogonal matching pursuit (gOMP)is a
generalization of orthogonal matching pursuit (OMP).
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Generalized Orthogonal Matching Pursuit (gOMP)

The generalized orthogonal matching pursuit (gOMP)is a
generalization of orthogonal matching pursuit (OMP).

In contrast to the OMP algorithm, the gOMP algorithm
reconstructs the K -sparse signal in K steps by selecting
N(> 1) atoms in each iteration.
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Generalized Orthogonal Matching Pursuit (Cont.)

Table: gOMP algorithm

Input: measurement y∈ R
m, sensing matrix Φm×n

Initialization: counter k=0, residue r0=y,
estimated support set Λk = ∅
While k<K and ||rk ||2 > 0
Identification: hk+1=Set of indices corresponding to the N
largest entries in |Φtrk |. (NK ≤ m)
Augment: Λk+1 = Λk ∪ {hk+1}
Estimate: xΛk+1 = argmin

z
||y −ΦΛk+1z||2

Update: rk+1 = y −ΦΛk+1xΛk+1

k=k+1
End While
Output: x = argmin

u:supp(u)=Λk

||y −Φu||2
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Generalized Orthogonal Matching Pursuit (Cont.)

Figure: Reconstruction performance for K -sparse Gaussian signal vector
using Gaussian dictionary(128× 256) as a function of sparsity K

Courtesy: J. Wang, S. Kwon & B. Shim (2012) [1]
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Generalized Orthogonal Matching Pursuit (Cont.)

Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):
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Generalized Orthogonal Matching Pursuit (Cont.)

Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):

In gOMP algorithm, convergence in a maximum of K steps is
established by ensuring that in each iteration, at least one of
the N new atoms chosen belongs to ΦT , i.e., it has an index
belonging to the true support set T .
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):

In gOMP algorithm, convergence in a maximum of K steps is
established by ensuring that in each iteration, at least one of
the N new atoms chosen belongs to ΦT , i.e., it has an index
belonging to the true support set T .

Let βk+1, k = 0, 1, · · · ,K − 1 denote the largest (in
magnitude) correlation between rk and the atoms of ΦT at
the k-th step of iteration, i.e.,
βk+1 = max{|φt

i r
k | |i ∈ T , k = 0, 1, · · · ,K − 1}.
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):

In gOMP algorithm, convergence in a maximum of K steps is
established by ensuring that in each iteration, at least one of
the N new atoms chosen belongs to ΦT , i.e., it has an index
belonging to the true support set T .

Let βk+1, k = 0, 1, · · · ,K − 1 denote the largest (in
magnitude) correlation between rk and the atoms of ΦT at
the k-th step of iteration, i.e.,
βk+1 = max{|φt

i r
k | |i ∈ T , k = 0, 1, · · · ,K − 1}.

Let the N largest (in magnitude) correlations between rk and
the atoms of Φ not belonging to ΦT be given by
αk+1
i , i = 1, 2, · · · ,N, arranged in descending order as

αk+1
1 > αk+1

2 ... > αk+1
N .
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Generalized Orthogonal Matching Pursuit (Cont.)

Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):
Then, it is shown in [1] that
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):
Then, it is shown in [1] that

αk+1
N <

1− 3δNK

1− δNK

||xT−Λk ||2√
N

(7)
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):
Then, it is shown in [1] that

αk+1
N <

1− 3δNK

1− δNK

||xT−Λk ||2√
N

(7)

and

βk+1 >
δNK

1− δNK

||xT−Λk ||2√
K − l

, (8)

where l = |T ∩ Λk |.
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):
Then, it is shown in [1] that

αk+1
N <

1− 3δNK

1− δNK

||xT−Λk ||2√
N

(7)

and

βk+1 >
δNK

1− δNK

||xT−Λk ||2√
K − l

, (8)

where l = |T ∩ Λk |.
Therefore, the sufficient condition to ensure convergence in a
maximum of K steps is then obtained by setting the RHS of
(8) greater than that of (7) as

δNK <
√
N√

K+3
√
N

where N(≥ 1)

Mrityunjoy Chakraborty Generalized Orthogonal Matching Pursuit- A Review and Some



Generalized Orthogonal Matching Pursuit (Cont.)

Our (i.e. with R. L. Das & S. Satpathi) contribution:
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Our (i.e. with R. L. Das & S. Satpathi) contribution:

We first retain the upper bound of αk+1
N as given in (2), while

the lower bound of βk+1 given in (3) is refined which
eventually results in a lesser restrictive upper bound on δNK as
shown in Theorem 1.
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Generalized Orthogonal Matching Pursuit (Cont.)

Our (i.e. with R. L. Das & S. Satpathi) contribution:

We first retain the upper bound of αk+1
N as given in (2), while

the lower bound of βk+1 given in (3) is refined which
eventually results in a lesser restrictive upper bound on δNK as
shown in Theorem 1.

Subsequently, we refine both the upper bound of αk+1
N

and
the lower bound of βk+1, which leads to an improved upper
bound on δNK+1 as shown Theorem 2.
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Generalized Orthogonal Matching Pursuit (Cont.)

The derivation uses the following Lemma, which is an extension of
the Lemma 3.2 of [11].

Lemma 1

Given u ∈ R
n, I1, I2 ⊂ Z where I2 = supp(u) and I1 ∩ I2 = ∅

(1−
δ|I1|+|I2|

1− δ|I1|+|I2|
)||u||22 ≤ ||AI1u||22 ≤ (1 + δ|I1|+|I2|)||u||22

Mrityunjoy Chakraborty Generalized Orthogonal Matching Pursuit- A Review and Some



Generalized Orthogonal Matching Pursuit (Cont.)

Additionally, we use certain properties of the RIP constant, given
by Lemma 1 in [7],[8] which are reproduced below.

Lemma 2

For I , J ⊂ Z , I ∩ J = ∅, q ∈ R
|I | and p ∈ R

|J|

(a) δK1
≤ δK2

∀K1 < K2 (monotonicity)

(b) (1− δ|I |)||q||2 ≤ ||Φt
IΦIq||2 ≤ (1 + δ|I |)||q||2

(c) 〈ΦIq,ΦJp〉 ≤ δ|I |+|J|||p||2||q||2 with equality holding if either
of p and q is zero. Also, ||Φt

IΦJp||2 ≤ δ|I |+|J|||p||2 with equality
holding if p is zero.
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Generalized Orthogonal Matching Pursuit (Cont.)

The Theorem 1:

Theorem 1

The gOMP can recover x exactly when Φ satisfies RIP of order
NK with

δNK <

√
N√

K + 2
√
N
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The Theorem 1:

Theorem 1

The gOMP can recover x exactly when Φ satisfies RIP of order
NK with

δNK <

√
N√

K + 2
√
N

Proof.

We have shown in [12] that

βk+1 >
1√
K
(1− δNK

1− δNK

)||xT−Λk ||2 (9)

Setting the RHS of (9) greater than the RHS of (7), the result
follows trivially.

For Complete Proof of Theorem 1
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The Theorem 2:

Theorem 2

The gOMP algorithm can recover x exactly when Φ satisfies RIP
of order NK + 1 with

δNK+1 <

√
N√

K +
√
N
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Generalized Orthogonal Matching Pursuit (Cont.)

Proof.

Note that rk = P⊥
Λky = P⊥

ΛkΦT−ΛkxT−Λk . We can then write,

rk = ΦT∪Λkx′′T∪Λk (10)

where

x′′
T∪Λk =

[

xT−Λk

−zΛk

]

(11)

and PΛkΦT−ΛkxT−Λk = ΦΛk zΛk for some zΛk ∈ R
|Λk | ≡ R

Nk .

Then, it is shown in [12] that αk+1
N < 1√

N
δNK+1||x′′T∪Λk ||2 and

βk+1> 1√
K
(1− δNK )||x′′T∪Λk ||2. Setting the RHS of (11) greater

than that of (10), the result is obtained trivially.

For Complete Proof of Theorem 2 Go to references
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Proof of Theorem 1 in detail

First note that βk+1 = ||Φt
T r

k ||∞, k = 0, 1, · · · ,K − 1 and that
rk = P⊥

Λky is orthogonal to each column of ΦΛk , which also means

that P⊥
Λky = P⊥

ΛkΦT xT
= P⊥

Λk (ΦT−ΛkxT−Λk +ΦT∩ΛkxT∩Λk ) = P⊥
ΛkΦT−ΛkxT−Λk . It is

then possible to write,

βk+1 = ||Φt
T r

k ||∞ >
1√
K
||Φt

T r
k ||2 (as |T | = K )

=
1√
K
||Φt

T−Λk r
k ||2 =

1√
K
||Φt

T−ΛkP
⊥
Λky||2

=
1√
K
||Φt

T−Λk (P
⊥
Λk )

tP⊥
Λky||2 (as P = Pt&P = P2)

=
1√
K
||(P⊥

ΛkΦT−Λk )tP⊥
ΛkΦT xT ||2

=
1√
K
||(P⊥

ΛkΦT−Λk )tP⊥
ΛkΦT−ΛkxT−Λk ||2 (12)
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Proof of Theorem 1 in detail I

Next we define a vector x′, where x ′i = xi if i ∈ T − Λk and x ′i = 0
otherwise. It is easy to see that Φx′ = ΦT−ΛkxT−Λk and thus,

AΛkx′ = P⊥
ΛkΦx′ = P⊥

ΛkΦT−ΛkxT−Λk . (13)

[It is also easy to observe that P⊥
ΛkΦx′ = P⊥

ΛkΦT xT = rk , since

P⊥
Λkφi = 0 for i ∈ Λk .] We are now in a position to apply Lemma

1 on AΛkx′, taking I1 = Λk and I2 = supp(x′) = T − Λk and noting
that I1 ∩ I2 = ∅, |I1|+ |I2| = Nk + K − l , to obtain

||AΛkx′||22 ≥ (1− δNk+K−l

1− δNk+K−l

)||x′||22
L1a
> (1− δNK

1− δNK

)||xT−Λk ||22, (14)
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Proof of Theorem 1 in detail II

where Nk + K − l < NK follows from the fact that k ≤ l and
k < K . Moreover,

||AΛkx′||22
(13)
= ||P⊥

ΛkΦT−ΛkxT−Λk ||22
= 〈P⊥

ΛkΦT−ΛkxT−Λk ,P⊥
ΛkΦT−ΛkxT−Λk 〉

= 〈(P⊥
ΛkΦT−Λk )tP⊥

ΛkΦT−ΛkxT−Λk , xT−Λk 〉
≤ ||(P⊥

ΛkΦT−Λk )tP⊥
ΛkΦT−ΛkxT−Λk ||2||xT−Λk ||2 (15)

Combining (14) and (15) we get ||(P⊥
ΛkΦT−Λk )t

P⊥
ΛkΦT−ΛkxT−Λk ||2 > (1− δNK

1− δNK

)||xT−Λk ||2.
From (12), it then follows that

βk+1 >
1√
K
(1− δNK

1− δNK

)||xT−Λk ||2 (16)

Setting the RHS of (16) greater than the RHS of (7), the result
follows trivially. Return to Theorem 2
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Proof of Theorem 2 in detail

First, as seen earlier, rk = P⊥
Λky = P⊥

ΛkΦT−ΛkxT−Λk . We can then
write,

rk = ΦT−ΛkxT−Λk − PΛkΦT−ΛkxT−Λk

= ΦT−ΛkxT−Λk −ΦΛk zΛk

= ΦT∪Λkx′′T∪Λk (17)

where we use the fact that PΛkΦT−ΛkxT−Λk belongs to the
span(ΦΛk ) and thus can be written as ΦΛk zΛk for some

zΛk ∈ R
|Λk | ≡ R

Nk . The vector x′′
T∪Λk is then given as,

x′′
T∪Λk =

[

xT−Λk

−zΛk

]

(18)

Mrityunjoy Chakraborty Generalized Orthogonal Matching Pursuit- A Review and Some



Proof of Theorem 2 in detail I

Let W be the set of N incorrect indices corresponding to αk+1
i ’s

for i = 1, 2, · · · ,N (clearly, W ⊂ (T ∪ Λk)c and |W | = N). So,

αk+1
N

= min(|〈Φi , r
k〉| |i ∈ W )

6
||Φt

W rk ||2√
N

( as |W | = N)

(17)
=

1√
N
||Φt

WΦT∪Λkx′′T∪Λk ||2
L2c
6

1√
N
δN+Nk+K−l ||x′′T∪Λk ||2

L2a
<

1√
N
δNK+1||x′′T∪Λk ||2 (19)

where N + Nk + K − l < NK + 1 follows from the fact that l ≥ k
and k ≤ K − 1.
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Proof of Theorem 2 in detail II

Similarly,

βk+1 = ||Φt
T r

k ||∞ ≥ 1√
K
||Φt

T r
k ||2 ( as |T | = K )

=
1√
K
||
[

ΦT ΦΛk−T

]t
rk ||2 (20)

=
1√
K
||Φt

T∪ΛkΦT∪Λkx′′T∪Λk ||2
L2b
>

1√
K
(1− δNk+K−l )||x′′T∪Λk ||2

L12a
>

1√
K
(1− δNK )||x′′T∪Λk ||2. (21)

Setting the RHS of (21) greater than that of (19), the result is
obtained trivially.
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