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Overview of Compressed Sensing (CS)

@ A powerful technique to represent signals at a sub-Nyquist
sampling rate, provided the signal is known to be sparse in
some domain.
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Overview of Compressed Sensing (CS)

@ A powerful technique to represent signals at a sub-Nyquist
sampling rate, provided the signal is known to be sparse in
some domain.

@ It retains the capacity of perfect (or near perfect)
reconstruction of the signal from fewer samples than provided
by Nyquist rate sampling.

@ In last few years, the CS technique has attracted considerable
attention from across a wide array of fields like

@ applied mathematics,

@ statistics, and

© engineering including signal processing areas like
(i) MR imaging,
(i) speech processing,
(iii) analog to digital conversion etc.
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Overview of CS (Cont.)

Basic CS Formulation:

@ Let a real valued, bandlimited signal u(t) be sampled
following Nyquist sampling rate condition and over a finite
observation interval, generating the observation vector:

u= (Ul, ug, .- 7UN)T-
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Basic CS Formulation:

@ Let a real valued, bandlimited signal u(t) be sampled
following Nyquist sampling rate condition and over a finite
observation interval, generating the observation vector:

u= (Ul, ug, .- 7UN)T-

@ Further, u is known to be sparse in some transform domain

= if W: The N x N transform matrix (usually unitary) and,
x: Transform coefficient vector (€ RV), so that
u= Wx,
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Basic CS Formulation:

@ Let a real valued, bandlimited signal u(t) be sampled
following Nyquist sampling rate condition and over a finite
observation interval, generating the observation vector:
u=—= (ul, up,---, UN)T.

@ Further, u is known to be sparse in some transform domain

= if W: The N x N transform matrix (usually unitary) and,
x: Transform coefficient vector (€ RV), so that
u= Wx,

then, x is K-sparse
= a maximum of K no. of terms in x are non-zero.
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Overview of CS (Cont.)

@ Then, according to the CS theory, it is possible to recover u
from a fewer no., say, M (M < N) samples: y1,y2,- - ,ym,

linearly related to uy, up, -+ , uy as
y = Au = ®x, (¢ = AV)
where,

y =y, y2,-- ,ym]", and
A: A M x N sensing matrix.
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@ Then, according to the CS theory, it is possible to recover u

from a fewer no., say, M (M < N) samples: y1,y2,- - ,ym,
linearly related to uy, up, -+ , uy as

y = Au = ®x, (¢ = AV)

where,

y =y, y2,-- ,ym]", and
A: A M x N sensing matrix.

@ Ideal approach to recover x is by Iy minimization:
min ||x||, subject to y = ®x. (1)
xeRN

— It provides the sparsest solution for x.
— Uniqueness of the K-sparse solution requires that
every 2K columns of ® should be linearly independent.
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@ Then, according to the CS theory, it is possible to recover u

from a fewer no., say, M (M < N) samples: y1,y2,- - ,ym,
linearly related to uy, up, -+ , uy as

y = Au = ®x, (¢ = AV)

where,

y =y, y2,-- ,ym]", and
A: A M x N sensing matrix.

@ Ideal approach to recover x is by Iy minimization:
min ||x||, subject to y = ®x. (1)
xeRN

— It provides the sparsest solution for x.
— Uniqueness of the K-sparse solution requires that
every 2K columns of ® should be linearly independent.
But, it is a non-convex problem and is NP-hard.
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Overview of CS (Cont.)

@ More practical approaches using /; norm (and above) can find
the desired K-sparse solution.
— But this requires ® to satisfy certain “Restricted
Isometry Property (RIP)".
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@ More practical approaches using /; norm (and above) can find
the desired K-sparse solution.
— But this requires ® to satisfy certain “Restricted
Isometry Property (RIP)".

o A matrix ® is said to satisfy the RIP of order K if there exists
a "Restricted Isometry Constant” dx € (0, 1) so that

(1 — k) [x[5 < [|®x]]5 < (1 + k) [[x[[5 (2)

for all K-sparse x.
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@ More practical approaches using /; norm (and above) can find
the desired K-sparse solution.
— But this requires ® to satisfy certain “Restricted
Isometry Property (RIP)".

o A matrix ® is said to satisfy the RIP of order K if there exists
a "Restricted Isometry Constant” dx € (0, 1) so that

(1 — k) [x[5 < [|®x]]5 < (1 + k) [[x[[5 (2)

for all K-sparse x.

o The constant dk is taken as the smallest number from (0, 1)
for which the RIP is satisfied.

o If ® satisfies RIP of order K, then it also satisfies RIP for any
order L where L < K and that §; > k.

@ Simple choice of random matrices for ® can make it satisfy
RIP with high probability.
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CS Reconstruction Methods
Convex Relaxation:

@ It replaces the ly norm in (1) by / norm to reduce the
problem to a convex problem.
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CS Reconstruction Methods

Convex Relaxation:

@ It replaces the ly norm in (1) by / norm to reduce the
problem to a convex problem.

@ Three main directions under this category, namely the basis
pursuit (BP) , the basis pursuit de-noising (BPDN) and the
least absolute shrinkage and selection operator (LASSO):

1.

2.

BP: min ||x||; subject to y = ®x (3)
x€RN
BPDN: min \||x||, + [[r|][3 st r=y—®x (4)
x€RN

LASSO: min |ly — ®x|[3 st ||x||; <e (5)
xeRN
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@ The BP problem can be solved by standard polynomial time
algorithms of linear programming (LP) methods.
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@ The BP problem can be solved by standard polynomial time
algorithms of linear programming (LP) methods.

@ The exact K-sparse signal reconstruction by BP algorithm
based on RIP was first investigated by E. Candes et.al. (2006)
with the following bound on dk

Ok + 0o + 03 < 1 (6)
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@ The BP problem can be solved by standard polynomial time
algorithms of linear programming (LP) methods.

@ The exact K-sparse signal reconstruction by BP algorithm
based on RIP was first investigated by E. Candes et.al. (2006)
with the following bound on dk

Ok + 0ok + o3k <1 (6)

@ Later the bound was refined by S. Foucart (2010) as
dok < 0.4652.
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@ The BP problem can be solved by standard polynomial time
algorithms of linear programming (LP) methods.

@ The exact K-sparse signal reconstruction by BP algorithm
based on RIP was first investigated by E. Candes et.al. (2006)
with the following bound on dk

Ok + 0o + 03 < 1 (6)

@ Later the bound was refined by S. Foucart (2010) as
dok < 0.4652.

@ The BPDN and LASSO problems can be solved by efficient
quadratic programming (QP) like primal-dual interior method.

@ However, the regularization parameters A and € play a crucial
role in the performance of these algorithms.
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Greedy Pursuits:

@ This approach recovers the K-sparse signal by iteratively
constructing the support set of the sparse signal (index of
non-zero elements in the sparse vector).
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Greedy Pursuits:

@ This approach recovers the K-sparse signal by iteratively
constructing the support set of the sparse signal (index of
non-zero elements in the sparse vector).

@ At each iteration, it updates its support set by appending the
index of one or more columns (called atoms) of the matrix ®
(often called dictionary) by some greedy principles based on
the correlation between current residual of observation vector
and the atoms.
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Overview of CS (Cont.)

Greedy Pursuits:

@ Few examples of greedy algorithms:

© Orthogonal Matching Pursuit (OMP): §k41 < ﬁ

© Compressive Sampling Matching Pursuit(CoSaMP):dsx < 0.1
© Subspace Pursuit(SP): d3x < 0.165
Q lterative Hard Thresholding (IHT): d3x < —& =~ 0.177.

© Generalized Orthogonal Matching Pursuit (gOMP):

VN
O < 7R3 7R
selected by the gOMP algorithm in each iteration [1].

where N(> 1) is the number of atoms
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— OMP reconstructs the K-sparse signal in K steps by selecting
one atom in each iteration.
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Overview of CS (Cont.)

— OMP reconstructs the K-sparse signal in K steps by selecting
one atom in each iteration.

— CoSaMP and SP select a fixed number of atoms (2K in
CoSaMP and K in SP, for K-sparse signal) in each iteration
while keeping the provision of rejecting a previously selected
atom.
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— OMP reconstructs the K-sparse signal in K steps by selecting
one atom in each iteration.

— CoSaMP and SP select a fixed number of atoms (2K in
CoSaMP and K in SP, for K-sparse signal) in each iteration
while keeping the provision of rejecting a previously selected
atom.

— IHT uses gradient descent followed by a hard thresholding that
sets all but the K largest (in magnitude) elements in a vector
to zero.
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Generalized Orthogonal Matching Pursuit (gOMP)

@ The generalized orthogonal matching pursuit (gOMP)is a
generalization of orthogonal matching pursuit (OMP).
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Generalized Orthogonal Matching Pursuit (gOMP)

@ The generalized orthogonal matching pursuit (gOMP)is a
generalization of orthogonal matching pursuit (OMP).

@ In contrast to the OMP algorithm, the gOMP algorithm
reconstructs the K-sparse signal in K steps by selecting
N(> 1) atoms in each iteration.
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Generalized Orthogonal Matching Pursuit (Cont.)

Table: gOMP algorithm

Input: measurement ye R™, sensing matrix ®™*"
Initialization: counter k=0, residue rozy,
estimated support set AK = ()
While k<K and [|r¥[|, > 0
Identification: h*T1=Set of indices corresponding to the N
largest entries in |®frk|. (NK < m)
Augment: N1 = Ak {pk+1}
Estimate: Xper1 = argmin ||y — ®pxr12||2
z

Update: r*t1 =y — @ i1y
k=k+1
End While

Output: x = argmin ||y — ®ul|,
u:supp(u)=Ak
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Generalized Orthogonal Matching Pursuit (Cont.)

8
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Figure: Reconstruction performance for K-sparse Gaussian signal vector
using Gaussian dictionary(128 x 256) as a function of sparsity K

Courtesy: J. Wang, S. Kwon & B. Shim (2012) [1]
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Generalized Orthogonal Matching Pursuit (Cont.)

Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):

@ In gOMP algorithm, convergence in a maximum of K steps is
established by ensuring that in each iteration, at least one of
the N new atoms chosen belongs to @, i.e., it has an index
belonging to the true support set T.
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):

@ In gOMP algorithm, convergence in a maximum of K steps is
established by ensuring that in each iteration, at least one of
the N new atoms chosen belongs to @, i.e., it has an index
belonging to the true support set T.

o Let ¥t k=0,1,--- ,K — 1 denote the largest (in
magnitude) correlation between r and the atoms of ® 1 at
the k-th step of iteration, i.e.,

B = max{|pirk| |i€ T, k=0,1,--- K —1}.
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):

@ In gOMP algorithm, convergence in a maximum of K steps is
established by ensuring that in each iteration, at least one of
the N new atoms chosen belongs to @, i.e., it has an index
belonging to the true support set T.

o Let ¥t k=0,1,--- ,K — 1 denote the largest (in
magnitude) correlation between r and the atoms of ® 1 at
the k-th step of iteration, i.e.,

B = max{|pirk| |i€ T, k=0,1,--- K —1}.

@ Let the N largest (in magnitude) correlations between r* and

the atoms of ® not belonging to ® 1 be given by

af.‘+1, i=1,2,--- N, arranged in descending order as
k+1 k+1 k+1
ap T > an > ay
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Generalized Orthogonal Matching Pursuit (Cont.)

Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):
Then, it is shown in [1] that
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.

Shim (2012):
Then, it is shown in [1] that
’ |
— SONK [[XT—AK[[2
;<V+1 T—A\ (7)

1-0nk VN
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Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.

Shim (2012):
Then, it is shown in [1] that
° 1 - 30 [Ix7el
k+1 — JONK ||XT_pK]|2
7
“n 1-dvk VN ()
and
° o Izl
k+1 NK XT_AK]]2
> , 8
P 1-dvk VK —1 ()

where | = |T NAK|.
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Generalized Orthogonal Matching Pursuit (Cont.)

Analysis of the gOMP algorithm by J. Wang, S. Kwon & B.
Shim (2012):
Then, it is shown in [1] that

"]
k41 1 — 30k |1x7_pxll2 (7)
N 1-0nk VN
and
]

B+ S Onk  |IXT_pkl2

1—donk VK—=1 (8)

where | = |T NAK|.

@ Therefore, the sufficient condition to ensure convergence in a

maximum of K steps is then obtained by setting the RHS of
(8) greater than that of (7) as

Ink < % where N(> 1)

Mrityunjoy Chakraborty
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Generalized Orthogonal Matching Pursuit (Cont.)

Our (i.e. with R. L. Das & S. Satpathi) contribution:
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Generalized Orthogonal Matching Pursuit (Cont.)

Our (i.e. with R. L. Das & S. Satpathi) contribution:

@ We first retain the upper bound of a’,§,+1 as given in (2), while

the lower bound of 3%*1 given in (3) is refined which
eventually results in a lesser restrictive upper bound on dyk as
shown in Theorem 1.
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Our (i.e. with R. L. Das & S. Satpathi) contribution:

@ We first retain the upper bound of a’f\lﬂ as given in (2), while

the lower bound of 3%*1 given in (3) is refined which
eventually results in a lesser restrictive upper bound on dyk as
shown in Theorem 1.

@ Subsequently, we refine both the upper bound of a;(VH and
the lower bound of 3t which leads to an improved upper
bound on dyk+1 as shown Theorem 2.

Mrityunjoy Chakraborty Generalized Orthogonal Matching Pursuit- A Review and Some



Generalized Orthogonal Matching Pursuit (Cont.)

The derivation uses the following Lemma, which is an extension of
the Lemma 3.2 of [11].

Givenu € R", Iy, l, C Z where I, = supp(u) and h Nl =0

(1- O+

)l < (1Al 3 < (1+ G e lull
AR
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Generalized Orthogonal Matching Pursuit (Cont.)

Additionally, we use certain properties of the RIP constant, given
by Lemma 1 in [7],[8] which are reproduced below.

Lemma 2

Forl,Jc Z,inJ=0,qeR and p € RV
(a) 0k, < dk, ¥V Ki < Ko (monotonicity)

(b) (1 —opllall2 < [|®fPqll2 < (1+9))lall2

(c) (®1q,®,p) < 5511 yllpll2llall2 with equality holding if either
of p and q is zero. Also, ||®[®p||2 < &)1 ylIp|l2 with equality
holding if p is zero.

Mrityunjoy Chakraborty Generalized Orthogonal Matching Pursuit- A Review and Some



Generalized Orthogonal Matching Pursuit (Cont.)

The Theorem 1:

The gOMP can recover x exactly when ® satisfies RIP of order

NK with
VN

Nk < —————
N> VK + 2N
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Generalized Orthogonal Matching Pursuit (Cont.)

The Theorem 1:

The gOMP can recover x exactly when ® satisfies RIP of order

NK with
VN

Nk < —————
N> VK + 2N

Proof.
We have shown in [12] that

1 ONK
1—
\/R( 1_ 5NK)||XT_Ak||2

,8k+1 >

Setting the RHS of (9) greater than the RHS of (7), the result
follows trivially.

(9)

O

ot
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Generalized Orthogonal Matching Pursuit (Cont.)

The Theorem 2:

The gOMP algorithm can recover x exactly when ® satisfies RIP
of order NK + 1 with

0 < ﬂ
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Generalized Orthogonal Matching Pursuit (Cont.)

Proof.

Note that r* = Py, y = P, ® 1 pcx7_pac. We can then write,

rk = d’TU/\kx/';'U/\k (10)
where
XT_ Ak
XTunk = [ _TZ/C< } (11)

k
and Ppc® 1 piX_pax = ®puzpx for some zy € RV = RNk,
Then, it is shown in [12] that (Yf\/+1<ﬁ5NK+1HX/7/-U/\kH2 and

/)’k+1>#(1 — Ok )|[X5 2 Setting the RHS of (11) greater

than that of (10), the result is obtained trivially. O

-
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Proof of Theorem 1 in detail

First note that %! = ||®%rk||, k=10,1,--- ,K — 1 and that

rk = Pkky is orthogonal to each column of ®,«, which also means

that PLy = Pr®7xT
- P/J\_k(q)T—/\kxT—/\k + O ropXTapk) = Pkk‘by—_,\kxT_,\k. It is
then possible to write,

1 t k
W”“’Tr 2 (as [ T| = K)
1
VK
(P7:)'Paiyll2 (as P = P'&P = P?)

B = |05k | o >

1 k
= —=[|®7_pr"ll2 =

VK
_ 1

VK
1
= W”(Pkkd’T—/\k)thkd’T’(THz
1
= —||(Pkkq’T—/\k)tP*kq’T—/\kXT—/\k||2 (12)

VK

195 _pPacyll2

t
197
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Proof of Theorem 1 in detail |

Next we define a vector x’, where x/ = x; if i € T — A¥ and xI=0
otherwise. It is easy to see that ®x’ = ®_ «x7_p« and thus,

A/\kx/ = P/J\_k(bxl = Pf\‘de-,—_AkXT_/\k. (13)

[It is also easy to observe that Pkktbx’ = PkdeTxT =rk, since
Pkkqb,- =0 for i € Ak.] We are now in a position to apply Lemma
1 on Apx/, taking Iy = AX and I = supp(x’) = T — A¥ and noting
that h Nh =0,|h|+ || = Nk + K — I, to obtain

ONK+K—1
AKX |3 > (1 — ——=—)||X[3
1 — Onkgk—1
Lla 5NK
> (1- 7)||XT—N<||%> (14)
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Proof of Theorem 1 in detail I

where Nk + K — | < NK follows from the fact that kK </ and
k < K. Moreover,

(13)
||A/\kx/||% = ||Pkk¢T—/\kXT—/\k||%

= (P/J\_kd)T_/\kxT_Ak, P/J\_k¢T_AkXT_Ak>
= <(Pkk¢T—Ak)tP/{}¢T—AkXT—Ak7XT_/\k>
(P ® 1K) Pric® 7 pex il |2 X7 pe 2 (15)

Combining (14) and (15) we get ||(P/J\_k¢7'_/\k)t

ONK
P/J\IQ)T—A“XT—N‘HZ > (1- X7k |2-
1 - dnk

From (12), it then follows that
1 ONK
1—
\/R( 1_6NK)||XT—/\’<||2

Setting the RHS of (16) greater than the RHS of (7), the result
follows trivially.

,Bk+1 >

(16)
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Proof of Theorem 2 in detail

First, as seen earlier, r = Pkky = PkdeT_,\kxT_,\k. We can then
write,

rk = ¢T—A’<XT—A’< — P/\kq)T_/\kXT_/\k
= ¢T—AkXT—N< — ¢/\kZ/\k
. "
= O X pk (17)

where we use the fact that Py« ®_ «X7_px belongs to the
span(®px) and thus can be written as ®pxzpx for some

k . .
Zpk € RINI = RNk The vector x,7/'u/\k is then given as,
7 _ | XT=nk
XTunk = [_ZAk } (18)
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Proof of Theorem 2 in detail |

Let W be the set of N incorrect indices corresponding to affﬂ's

for i =1,2,--- N (clearly, W C (T UA¥)¢ and |W| = N). So,

af™t = min(|(®;,r¥)| |i € W)

IC P
<# (as |W| = N)
17 1

NG || @5y D 7 AeXT k]2

L2¢ 1 ”
< W5N+Nk+K—/|\XTU,\kH2

122 1
< W(SNK+1||XI7/'U/\I<||2 (19)

where N + Nk + K — | < NK + 1 follows from the fact that / > k
and k< K — 1.
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Proof of Theorem 2 in detail I

Similarly,

1
,Bk+1:||¢tl'rk||00>—K||¢Errk||2 (aS|T|:K)

- \/LRH (@7 ®pn_ ] |2 (20)
= %R||¢?UA/<¢TU/\’<X,7/'U/\’<||2

Lib %(1 — Ok k—1)| X T px ]2

Hi2a %(1 —Sr)lIX el (21)

Setting the RHS of (21) greater than that of (19), the result is
obtained trivially.
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