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Matching Pursuits With Time-Frequency Dictionaries 
StCphane G. Mallat, Member, IEEE, and Zhifeng Zhang 

Abstract-We introduce an algorithm, called matching pur- 
suit, that decomposes any signal into a linear expansion of 
waveforms that are selected from a redundant dictionary of 
functions. These waveforms are chosen in order to best match 
the signal structures. Matching pursuits are general proce- 
dures to compute adaptive signal representations. With a 
dictionary of Gabor functions a matching pursuit defines an 
adaptive time-frequency transform. We derive a signal energy 
distribution in the time-frequency plane, which does not in- 
clude interference terms, unlike Wigner and Cohen class dis- 
tributions. A matching pursuit isolates the signal structures that 
are coherent with respect to a given dictionary. An application 
to pattern extraction from noisy signals is described. We com- 
pare a matching pursuit decomposition with a signal expansion 
over an optimized wavepacket orthonormal basis, selected with 
the algorithm of Coifman and Wickerhauser. 

I. INTRODUCTION 
E can express a wide range of ideas and at the same W time easily communicate subtle difference between 

close concepts, because natural languages have large vo- 
cabularies, that include words with close meanings. For 
information processing, low level signal representations 
must also provide explicit information on very different 
properties, while giving simple cues to differentiate close 
pattems. The numerical parameters should offer compact 
characterizations of the elements we are looking for. The 
wide scope of pattems embedded in complex signals and 
the precision of their characterization, also motivate de- 
compositions over large and redundant dictionaries of 
waveforms. Linear expansions in a single basis, whether 
it is a Fourier, wavelet, or any other basis, are not flexible 
enough. A Fourier basis provided a poor representation 
of functions well localized in time, and wavelet bases are 
not well adapted to represent functions whose Fourier 
transforms have a narrow high frequency support. In both 
cases, it is difficult to detect and identify the signal pat- 
terns from their expansion coefficients, because the infor- 
mation is diluted across the whole basis. Similar examples 
can be found for any type of basis. Such decompositions 
are similar to a text written with a small vocabulary. Al- 
though this vocabulary might be sufficient to express all 
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ideas, it requires to use circumvolutions that replace un- 
available words by full sentences. 

Flexible decompositions are particularly important for 
representing signal components whose localizations in 
time and frequency vary widely. The signal must be ex- 
panded into waveforms whose time-frequency properties 
are adapted to its local structures. Such waveforms are 
called time-frequency atoms. For example, impulses need 
to be decomposed over functions well concentrated in 
time, while spectral lines are better represented by wave- 
forms which have a narrow frequency support. When the 
signal includes both of these elements, the time-frequency 
atoms must be adapted accordingly. One must therefore 
introduce a procedure that chooses the waveforms that are 
best adapted to decompose the signal structures, among 
all the time-frequency atoms of a large dictionary. Section 
I1 briefly reviews the properties of time-frequency atoms 
and their relations to window Fourier transforms and 
wavelet transforms. 

We introduce an algorithm called matching pursuit, that 
decomposes any signal into a linear expansion of wave- 
forms that belong to a redundant dictionary of functions. 
These waveforms are selected in order to best match the 
signal structures. Although a matching pursuit is nonlin- 
ear, like an orthogonal expansion, it maintains an energy 
conservation which guaranties its convergence. It is 
closely related to projection pursuit strategies, developed 
by Friedman and Stuetzle [7] for statistical parameter es- 
timation. The general algorithm in the Hilbert space 
framework is explained in Section 111 and the finite di- 
mensional case is further studied in Section IV. 

The application of matching pursuits to adaptive time- 
frequency decomposition is described in Section V. The 
signal is decomposed into waveforms selected among a 
dictionary of time-frequency atoms, that are the dilations, 
translations, and modulations of a single window func- 
tion. We derive a time-frequency energy distribution, by 
adding the Wigner distribution of the selected time-fre- 
quency atoms. Contrarily to the Wigner distribution or 
Cohen’s class distributions, this energy distribution does 
not include interference terms and thus provides a clear 
picture in the time-frequency plane. Qian and Chen 1141 
have developed independently a similar algorithm to ex- 
pand signals over time-frequency atoms. A fast imple- 
mentation of the matching pursuit for dictionary of Gabor 
time-frequency atoms is described in Section VI, with nu- 
merical examples. 

A matching pursuit decomposition provides an inter- 
pretation of the signal structures. If a structure does not 
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correlate well with any particular dictionary element, it is 
subdecomposed into several elements and its information 
is diluted. Section VI1 formally defines coherent signal 
structures with respect to a given dictionary, and explains 
how to detect them. An application to the extraction of 
patterns from noisy signals is described. 

A matching pursuit is a greedy algorithm that chooses 
at each iteration a waveform that is best adapted to ap- 
proximate part of the signal. Section VI11 compares this 
locally adaptive method to the algorithm of Coifman and 
Wickerhauser [4], which selects the basis that is best 
adapted to the global signal properties, among all bases 
of a wavepacket family. Numerical results show that the 
global optimization does not perform well for highly non- 
stationary signals, as opposed the greedy approach of a 
matching pursuit. On the other hand, the best basis al- 
gorithm is efficient to represent simpler signals that have 
stationary properties. 

Notations 

functions such that 
The space L2 (R) is the Hilbert space of complex valued 

+m 

I l f l i  = s / f ( t ) I 2 d t  < + m .  (1) 
-m 

The inner product of (f, g )  E L2(R)2 is defined by 

f m  

( j ,  g >  = S f ( r ) g ( t )  dt 

i ( w >  = S f(r)e-'"' dt. 

( 2 )  

where g (1) is the complex conjugate pf  g ( 1 ) .  The Fourier 
transform off( t )  E L2(R) is writtenf(w) and defined by 

-m  

+ m  

(3) 
-m  

11. TIME-FREQUENCY ATOMIC DECOMPOSITIONS 
Decompositions of signals over family of functions that 

are well localized both in time and frequency have found 
many applications in signal processing and harmonic 
analysis. Such functions are called time-frequency atoms. 
Depending upon the choice of time-frequency atoms, the 
decomposition might have very different properties. Win- 
dow Fourier transforms and wavelet transforms are ex- 
amples of time-frequency signal decomposition that have 
been studied thoroughly [2], [5], [13], [15]. To extract 
informations from complex signals, it is often necessary 
to adapt the time-frequency decomposition to the partic- 
ular signal structures. This section discusses the adaptiv- 
ity requirements. 

A general family of time-frequency atoms can be gen- 
erated by scaling, translating and modulating a single 
window function g ( t )  E L2(R). We suppose that g ( t )  is 
real, continuously differentiable and O (  1 / ( t 2  + 1)). We 
also impose that 11 gll = 1 ,  that the integral of g ( t )  is non- 
zero and that g(0)  # 0. For any scale s > 0, frequency 
modulating 4 and translation U ,  we denote y = (s, U, t )  

and define 

(4) 

The index y is an element of the set r = R+ X R2. The 
factor 1 /A normalizes to 1 the norm of g, ( t ) .  If g ( t )  is 
even, which is generally the case, g, ( t )  is centered at the 
abscissa U. Its energy is mostly concentrated in a neigh- 
borhood of U ,  whose size is proportional to s. Let g ( w )  be 
the Fourier transform of g ( t ) .  Equation (4) yields 

Since I g (U) I is even, I g, (U ) (  is centered at the frequency 
w = 4 .  Its energy is concentrated in a neighborhood of 4 ,  
whose size is proportional to 1 /s. 

The family 9 = (g,  ( t ) ) , , r  is extremely redundant, and 
its properties have been studied by Torresani [ 171. To rep- 
resent efficiently any functionf(t), we must select an ap- 
propriate countable subset of atoms ( g, , , ( t ) ) , eN,  with y, 
= (s,,, U , ,  tn), so thatf(t) can be written 

t m  

Depending upon the choice of the atoms g,,(t), the ex- 
pansion coefficients a, give explicit information on cer- 
tain types of properties of f ( t ) .  Window Fourier trans- 
forms and wavelet transforms correspond to different 
families of time-frequency atoms, that are frames or bases 
of L2(R). 

In a window Fourier transform, all the atoms gYn have 
a constant scale s, = so and are thus mainly localized over 
an interval whose size is proportional to so. If the main 
signal structures are localized over a time-scale of the or- 
der of so, the expansion coefficients a, give important in- 
sights on their localization and frequency content. How- 
ever, a window Fourier transform is not well adapted to 
describe structures that are much smaller or much larger 
than so. To analyze components of varying sizes, it is nec- 
essary to use time-frequency atoms of different scales. 

In opposition to the window Fourier transform, the 
wavelet transform decomposes signals over time-fre- 
quency atoms of varying scales, called wavelets. A wave- 
let family (g,,, ( t ) ) n E N  is built by relating the frequency pa- 
rameter t, to the scale s, with t ,  = Eo/s,, where lo is a 
constant. The resulting family is composed of dilations 
and translations of a single function, multiplied by com- 
plex phase parameter. The expansion coefficients a, of 
functions over wavelet families characterize the scaling 
behavior of signal structures. This is important for the 
analysis of fractals and singular behaviors. However, ex- 
pansion coefficients in a wavelet frame do not provide 
precise estimates of the frequency content of waveforms 
whose Fourier transforms is well localized, especially at 
high frequencies. This is due to the restriction on the fre- 
quency parameter t,, that remains inversely proportional 
to the scale s,. 

For signals f ( t )  that include scaling and highly oscil- 
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latory structures, one can not define a priori the appropri- 
ate constraints on the scale and modulation parameters of 
the time-frequency atoms g,,( ( t )  used in the expansion (6) .  
We need to select adaptively the elements of the dictionary 
33 = (g,(t))yEr, depending upon the local properties of 
f (0.  

111. MATCHING PURSUIT I N  HILBERT SPACES 
The general issue behind adaptive time-frequency de- 

compositions is to find procedures to expand functions 
over a set of waveforms, selected appropriately among a 
large and redundant dictionary. We describe a general al- 
gorithm, called matching pursuit, that performs such an 
adaptive decomposition. 

Let H be a Hilbert space. We define a dictionary as a 
family D = (g , ) ,E , -  of vectors in H ,  such that 11 g,l( = 1 .  
Let V be the closed linear span of the dictionary vectors. 
Finite linear expansions of vectors in D are dense in the 
space V .  We say that the dictionary is complete if and 
only if V = H .  For the dictionary of time-frequency at- 
oms described in Section 11, H = L 2 ( R ) ,  and each vector 
g, is an atom defined by (4) .  Finite linear expansions of 
time-frequency atoms are dense in L2 (R) [ 171, hence this 
dictionary is complete. 

LetfE H .  We want to compute a linear expansion off 
over a set of vectors selected from 9, in order to best 
match its inner structures. This is done by successive ap- 
proximations offwith orthogonal projections on elements 
of D. Let g,, E D. The vector f can be decomposed into 

(7) 

where Rf is the residual vector after approximating f in 
the direction of g,,,. Clearly g,,is orthogonal to Rf, hence 

(8) 

To minimize llRf 1 1 ,  we must choose g,, E D such that 
1 (f ,  g,, ) 1 is maximum. In some cases, it is only possible 
to find a vector g,, that is almost the best in the sense that 

(9) 

f = ( f 3  gy,) gy, + Rf 

Ilf1I2 = I ( f ,  g,,) l2 + llRfl12. 

I ( f 9  g,,, ) I 2 a sup I ( f ,  g, ) I 

where a is an optimality factor that satisfies 0 < a I 1.  
A matching pursuit is an iterative algorithm that sub- 

decomposes the residue Rf by projecting it on a vector of 
6 )  that matches Rf almost at best, as it was done forf. 
This procedure is repeated each time on the following res- 
idue that is obtained. Before giving further details, let us 
emphasize that the "choice" of a vector g,, that satisfies 
(9) is not random. It is defined by a choice function C, 
that associates to any subset A of r an index that belongs 
to A .  Let us define the set of vector indexes that satisfy 
(9) 

= { P  E r :  1 ( f ,  g o )  1 2 a SUP i< f ,  g,)l}. (10) 
Y C l -  

The choice of a vector g,, that satisfies (9) is equivalent 
to the choice of the index yo within AO, formally defined 
by yo = C(Ao). The axiom of choice guaranties that there 

exists at least one choice function, but in practice there 
are many ways to define it, and it depends upon the nu- 
merical implementation. 

Let us explain by induction, how the matching pursuit 
is carried further. Let Ro f = f .  We suppose that we have 
computed the nth order residue R" f ,  for n 1 0. We 
choose, with the choice function C ,  an element gyri E 9 
which closely matches the residue R" f 

( 1  1) I W f ,  gyri ) I 2 sup I W f ,  g,> I .  
Ycr 

The residue R n  f is subdecomposed into 

R n f  = ( R " f ,  g,,,)gYn + R " + ' f  (12) 

which defines the residue at the order n + 1 .  Since Rn + If 

is orthogonal to gYn 

llRnf112 = I W " f ,  g,,,) l 2  + IIRn+1f112. (13) 

Let us carry this decomposition up to the order m. We 
decompose f into the concatenated sum 

m -  I 

f = ( R " f -  R " + ' f )  + Rmf .  (14) 
n = O  

Equation (12) yields 
m -  1 

f = c (R"f9 g,,,) + R"f.  (15) 
n = O  

Similarly, 1) f 1 I 2  decomposed in a concatenated sum 
m -  1 

I I f  / I 2  = C (IIR"fII' - IIRn+'fI12) + IIRmfI12. (16) 
n = O  

Equation ( 13) yields an energy conservation equation 
m -  1 

\ I f  \ I 2  = I W f ,  g,,>) 1'  + llRmf112. (17) 

The original vector f is decomposed into a sum of 
dictionary elements, that are chosen to best match its res- 
idues. Although this decomposition is nonlinear, we 
maintain an energy conservation as if it was a linear or- 
thogonal decomposition. A major issue is to understand 
the behavior of the residue R" f when m increases. Let us 
mention that the algorithm can be modified by selecting 
several vectors from the dictionary at each iterations and 
projecting the residue over the space generated by these 
vectors [12], but we shall not further develop this ap- 
proach here. 

Functional approximations through such iterated or- 
thogonal projections has previously been studied in statis- 
tics by Friedman and Stuetzle [7], under the name of pro- 
jection pursuit regressions. Our algorithm was developed 
independently in a very different context, but the under- 
lying mathematics are similar, so we adopted the same 
vocabulary. The statistical problem is to estimate the con- 
ditional expectation of a random variable Y with respect 
to d random variables XI, X,, * . . , X,. To reduce the 
dimensionality of the problem, a projection pursuit 
regression decomposes the conditional expectation as a 

n = O  

' 

Authorized licensed use limited to: University of Surrey. Downloaded on September 10,2021 at 20:23:07 UTC from IEEE Xplore.  Restrictions apply. 



3400 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 41, NO. 12, DECEMBER 1993 

sum of conditional expectations of successive residues of 
Y,  with respect to one-dimensional random variables that 
are linear expansions of XI ,  X 2 ,  * . . , X,. This decom- 
position is obtained with a strategy similar to the match- 
ing pursuit approach. Readers further interested by pro- 
jections pursuits are referred to a tutorial review written 
by Huber [ 101. The mathematical similarities of the two 
algorithms allow us to transpose a result of Jones [ 1 I ]  that 
proves the convergence of projection pursuit algorithms. 
Let us recall that V is the closed linear span of vectors in 
D. We denote by W the orthogonal complement of V in 
H .  The orthogonal projectors over V and W are respec- 
tively written as Pv and Pw.  

Theorem 1: Let f E H .  The residue R m f  defined by the 
induction (12) satisfies 

lim 1IR"f - P,fII = 0. (18) 
i n -  +m 

Hence, 
+m 

and 
+ m  

IIPvf 1 1 2  = I < R " f ,  &,,) 1 2 .  (20) 
n = O  

Theorem 1 proves that the matching pursuit recovers 
the components off that belongs to the space spanned by 
the vectors of D. The proof is in Appendix A. When the 
dictionary is complete, which means that V = H ,  then 
Pvf  = f and Pwf  = 0. Hence, 

f m  

f = (R"f3 g.,,, )&,, (21) 
n = O  

and 
t m  

I I f  1 1 2  = I ( R " f >  &,,) 1 2 .  (22) 
n = O  

The vector f is characterized by the double sequence 
( ( R " f ,  g,,,), y n ) n e N  that we call structure book. Each y f l  
indexes an element selected in the dictionary and 
( R n f ,  g.,,, ) is the corresponding inner product. The order 
of elements in a structure book is not important for the 
reconstruction. 

The smallest complete dictionaries are bases. If 9 is 
an orthogonal basis, ( R "  f, g.,,, ) = ( f, g.,,x ) .  The match- 
ing pursuit decomposition is then equivalent to an orthog- 
onal expansion in the basis D. In this case, the indexes 
y n  carry no information. Indeed for almost all vectors f E 

H ,  the inner product with elements of the basis are never 
zero. Hence the sequence ( y n ) n E N  includes exactly once 
each index of the basis vectors and is thus a permutation 
of the index set r of D. Since the order is unimportant 
for the reconstruction, the sequence ( y n ) n E N  carries no in- 
formation. The largest possible dictionary D is the set of 
all unit vectors in H .  For this dictionary, we can set the 
optimality factor a to 1 and the matching pursuit con- 

verges in one iteration with g.,, = f/ 1 )  f 1 1  and ( f, gy, ) = 

11 f 1 1 .  The index yo characterizes f/ 11 f 11 among all unit 
vectors of H .  If H has a finite dimension N ,  the unit sphere 
is a surface of dimension N - I ,  so yo is characterized by 
N - 1 scalars whereas ( f ,  gyo) is given by 1 scalar. In 
this case, the index yo carries much more information than 
( f, g,,, ). In general, the balance of information between 
indexes and inner products depends upon the size of the 
dictionary. 

After m iterations, a matching pursuit decomposes a 
signal f into 

m - I 

f = c ( R " f ,  g.,,,)g.," + R"f.  (23) 
n = O  

If we stop the algorithm at this stage and only record the 
partial structure book ( ( R "  f, g,,, ), y n ) o  ,, < ,, the sum- 
mation of (23) recovers an approximation of f ,  with an 
error equal to R"f.  However, this sum is not a linear ex- 
pansion of the vectors ( gr,,)o ,, < that approximates f a t  
best. Let V, be the space generated by ( gy,,)o < , and 
Pvn, be the orthogonal projector on V,. For any f E H ,  
Pvm f is the closest vector to f that can be written as linear 
expansion of the m vectors ( g.,,t)o < m. We derive from 
(23) that 

m - I 

P , f  = ( R " f ,  gy,, ) gy,? + PV,JRf.  (24) 
I1 = 0 

If the family of vectors ( g,,7)0 < ,,, is not orthogonal, 
which is generally the case, then Pv,, ,Rmf # 0. The com- 
putation of 

m -  I 

P v , , , R m f =  C X n g y ,  (25) 
n = O  

is called a back-projection. Instead of storing the inner 
products ( R n f ,  g y m )  in the structure book, we then store 
( R n f ,  g,,,) + x, in order to recover Pvmf with (24). In 
this case, the approximation error 

P i d  = f - P V J  (26) 

is the orthogonal projection off  on the space W,, which 
is orthogonal complement of V,  in H .  One can derive 
from (23) that 

II Pwmf 1 1 2  = II Pw,,,R"f 1 1 2  = IIR"f 1 1 2  - II PvmRmf  I12. 
(27) 

The reduction of the approximation error thus depends 

The calculation of the coefficients ( x J 0  ,, < requires 
to solve the following linear system. For any gyh, 0 5 
k < m  

upon II PVmR"f II . 

m -  I 

< pvmRm.L gy,) = ( R m L  gy, ) c xn (gyri' gy,  ) 
n = O  

(28) 

Let us denote X = and Y = ( ( R " f ,  
g y a ) ) O s k < m .  Let G = ((gy,,, g y a ) ) ~ s k < m , ~ s n < m b e t h e  
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Gram matrix of the family of selected vectors. The linear 
system of (28) can be written Y = GX. The matrix G is 
nonnegative symmetric but might have some zero eigen- 
values if the vectors ( g,,I)o ,, < are linearly dependent. 
It is often a sparse matrix without any particular structure. 
Let p be the number of nonzero coefficient of G. The con- 
jugate gradient algorithm, when initialized to X o  = 0, it- 
eratively computes a sequence of vectors X,, that converge 
to the vector X of minimum norm which satisfies Y = GX 
[8]. Let K be the ratio between the largest eigenvalue of 
G and the smallest nonzero eigenvalue. One can prove [SI 
that 

The main computational burden of each iteration is to ap- 
ply G to some intermediate residual vector, which re- 
quires 0 ( p )  operations. The conjugate gradient algorithm 
thus requires O(np) operations to compute X,,. If no is the 
rank of G, unless K - '  is comparable to the computational 
precision, this algorithm guaranties that X = Xn0,  and 
clearly no I m. 

A matching pursuit is similar to a shape-gain vector 
quantizer [ 161. The codebook of a shape-gain quantizer is 
composed of a family of K unit vectors which is equiva- 
lent to a dictionary, and a sequence of scalars to quantize 
inner product values. The quantization approximates any 
vector f by projecting it on a vector gyo, which correlates 
best f among the K vectors of the codebook. The inner 
product ( f ,  gyo)  is quantized by approximating it to the 
closest scalar stored in the codebook. Vector quantiza- 
tions algorithms can be extended with a multistage strat- 
egy [9]. After quantizing a given vector, the remaining 
error is quantized once more, and the process continues 
iteratively. A matching pursuit is similar to a multistage 
shape-gain vector quantizer. However, a matching pursuit 
does not quantize the inner products ( R " f ,  g,!, ) , as op- 
posed to this vector quantizer. For information processing 
applications, matching pursuits use very redundant dic- 
tionaries of infinite size, whereas vector quantizers are 
based on finite dictionaries that are best adapted to data 
compression. Another major difference is that vector 
quantizations are performed in spaces of low dimension, 
generally smaller than 16. For example, image quantizers 
are based on blocks of less than 4 by 4 pixels. On the 
contrary, a matching pursuits is performed in a signal 
space H whose dimension N is equal to the total number 
of signal samples, which is typically several thousands. 
The underlined mathematical and algorithmic issues are 
thus quite different. 

IV. MATCHING PURSUIT I N  FINITE SPACES 
When the signal space H has a finite dimension N ,  the 

matching pursuit has specific properties that are studied 
in this section. The dictionary D may have an infinite 
number of elements and we suppose that it is complete. 
We describe an efficient implementation of matching pur- 

suit algorithms and prove that the norm of the residues 
decays exponentially. 

When the dictionary is very redundant, the search for 
the vectors that match best the signal residues can mostly 
be limited to a subdictionary Sa = ( g , ) , € r a  C 9. We 
suppose that To, is a finite index set included in r such 
that for any f E H 

Depending upon CY and the dictionary redundancy, the set 
ra can be much smaller than r. The matching pursuit 
is initialized by computing the inner products 
( (  f, g,))7Ercr,  and continues by induction as follows. 
Suppose that we have already computed ( ( R " f ,  
g, ) for n I 0. We search in 9, for an element 
g,,, such that 

(31) 

To find a dictionary element that matches f even better 
than g,,, we then search with a Newton method for an 
index -yn in a neighborhood of r, in r where I ( f ,  g, ) I 
reaches a local maxima. Clearly 

1 (R"f, g,") 1 2 1 (R"f, g,, ) I 2 01 sup 1 (R"f, g, ) 1 .  

I ( R " f ,  g,,) I = SUP 1 (R"f, g , )  I .  
,€re  

(32) 

Let us observe that the choice function mentioned in Sec- 
tion I11 is defined indirectly by this double search strat- 
egy. Once the vector g Y n  is selected, we compute the inner 
product of the new residue R" + ' f with any g, E a>,, with 
an updating formula derived from (12) 

( R " + ' f ,  g , )  = ( R " f ,  g , )  - (R"f, g,,,) (g,,, g,). 

(33) 

Since we previously stored ( R "  f, g, ) and ( R  " f, gYn ) , this 
update requires only to compute ( g,,, g, ) . Dictionaries 
are generally built so that this inner product is recovered 
with a small number of operations. The number of times 
we subdecompose the residues of a given signal f depends 
upon the desired precision E .  The number of iterations is 
the minimum p such that 

The energy conservation (1 7) proves that this equation is 
equivalent to 

P -  1 

I I f  II - I ( R " f ,  g,") l 2  5 E 2  I I f  II. (35) 
n = O  

Since we do not compute the residue R" f, at each iteration 
we test the validity of (35) to stop the decomposition. The 
number of iterations p depends upon the decay rate of 
llR" f ( I .  It can vary widely depending upon the signals but 
is much smaller than N is most applications. The energy 
of the residual error can be decreased with the back-pro- 
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jection algorithm described in Section 111. Many types of 
dictionaries do not contain any subfamily of less than N 
+ 1 vectors that are linearly dependent. In this case, once 
the matching pursuit has selected N different vectors, these 
vectors spans the whole signal space H .  Hence, after back- 
projection there is no more residual error and f is re- 
covered as a linear expansion of the N selected vectors. 
However, this basis of H might be badly conditioned 
which slows down the convergence of the back-projection 
algorithm. 

The decay of IIR"fll depends upon the correlation be- 
tween the residues and the dictionary elements. Let us 
define the correlation ratio of a functionfe H with respect 
to D as 

The following lemma guaranties that for any f E H ,  X ( f )  
is larger than a strictly positive constant. 

Lemma I: Let D be a complete dictionary in a finite 
dimensional space H ,  

(37) 

The proof of this lemma is in Appendix B. The value 
of Z ( A )  is the cosine of the maximum possible angle be- 
tween a direction of H and the closest direction of a 
dictionary vector. If D is an orthogonal basis, one can 
prove that I (  A) = 1 / f i .  The next lemma guaranties that 
IIR"f 11 decays exponentially in a finite dimensional space, 
with a rate proportional to a2 Z 2  ( A). 

Z ( A )  = inf A ( f )  > 0. 
f € H  

Lemma 2: Let f E H .  For any m > 0 

IIR"fII 5 I l f l l (1  - a2Z2(A))"*. (38) 
Proof: the matching pursuit chooses a vector gYn that 

satisfies 

I ( R " f ,  gyri) I 2 CY sup I ( R " f ,  g, ) I = a h ( R " f )  IIR"fl l . 

(39) 

Since l l ~ " + ' f I I 2  = I l ~ " f l I '  - I ~ f ,  g,,,) 1 2 ,  
I IRnf l f l l  I IIR"fll(1 - a2A2(Rnf))"2 (40) 

and hence, for any m > 0 
m -  I 

IIrfll I I l f l l  n ( 1  - a2X2(Rnf))1'2 
n = O  

I I l f l l ( l  - CY2f2(A))"'*. 0 (41) 
The lower the correlation ratios of a particular signal f 

and its residues, the slower the decay of their norm. If the 
signal f is the sum of a few high energy components that 
belong to the dictionary, the correlation ratios off and its 
residues is high so their norm decrease quickly. These 
high energy components can be viewed as "coherent 
structures" with respect to the dictionary. If the residues 
off have low-correlation ratios, their norm decay slowly 
and fmust  be expanded over manv dictionarv vectors in 

order to well approximated. This means that the infor- 
mation off is diluted across the dictionary. The extraction 
of coherent signal structures is further studied in Section 
VII. 

V. MATCHING PURSUIT WITH TIME-FREQUENCY 
DICTIONARIES 

For dictionaries of time-frequency atoms, a matching 
pursuit yields an adaptive time-frequency transform. It 
decomposes any functionf(t) E L 2 ( R )  into a sum of com- 
plex time-frequency atoms that best match its residues. 
This section studies the properties of this particular 
matching pursuit decomposition. We derive a new type of 
time-frequency energy distribution by summing the Wig- 
ner distribution of each time-frequency atom. 

Since a time-frequency atom dictionary is complete, 
Theorem 1 proves that a matching pursuit decomposes any 
function f E L~ ( R )  into 

+m 

where -yn = (s,,, U,, E,) and 

(43) 

These atoms are chosen to best match the residues off. 
The matching pursuit algorithm depends upon a choice 

function that selects at each iteration a vector gyri among 
all vectors that satisfy ( 1  1 ) .  Appendix C proves that we 
can define choice functions for which the matching pur- 
suit is covariant by dilation, translation and modulation. 
 et US denote (gyj;),lE,v and (g,b)n.N> with Y: = (SE, U:, 

4 : )  and yf, = (s!, U:, E l r ) ,  the family of time-frequency 
atoms selected to decompose respectively f o ( t )  andf ' (t) .  
Appendix C proves that there exists a class of choice 
functions such that 

if and only if for all n 2 0 

(44) 

and 

The translation, modulation, and dilation of a function 
appears as simple modifications of the selected atom in- 
dexes. The covariance through dilation, translation and 
modulation is important to perform a signal analysis that 
takes into account any of these transformations. 

From the decomposition of any f ( t )  within a time-fre- 
quency dictionary we derive a new time-frequency energy 
distribution, by adding the Wigner distribution of each 
selected atom. Let us recall that the cross Wigner distri- 
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bution of two functions f ( f )  and h ( f )  is defined by 

W [ f ,  h I @ >  

The Wigner distribution off( t )  is W f ( f ,  w )  = W [ f ,  f] ( t ,  
w).  Since the Wigner distribution is quadratic, we derive 
from the atomic decomposition (42) off(r)  that 

+ m  

Wf<t> = c I (R",f, g,,,) Wgy, , ( f ,  w )  
I 1  = 0 

+ m  f m  

The double sum corresponds to the cross terms of the 
Wigner distribution. It regroups the terms that one usually 
tries to remove in order to obtain a clear picture of the 
energy distribution of f ( t )  in the time-frequency plane. 
We thus only keep the first sum and define 

+m 

E f ( t ,  a) = I (R"f, g,,, ) 1 ' Wg,,, (t, U ) .  (49) 
I1 = 0 

A similar decomposition algorithm over time-frequency 
atoms was derived independently by Qian and Chen [ 141, 
in order to define this energy distribution in the time-fre- 
quency plane. From the well known dilation and transla- 
tion properties of the Wigner distribution and the expres- 
sion (43) of a time-frequency atom, we derive that for y 

The Wigner distribution also satisfies 

so the energy conservation (22) implies 

We can thus interpret Ef ( t ,  w )  as an energy density of f  
in the time-frequency plane ( t ,  w ) .  Unlike the Wigner and 
the Cohen class distributions, it does not include cross 
terms. It also remains positive if W g ( t ,  w )  is positive, 
which is the case when g ( r )  is Gaussian. On the other 
hand, the energy density E f ( t ,  w )  does not satisfy mar- 
ginal prouerties. as ouuosed to certain Cohen class distri- 

butions [ 11. The importance of these marginal properties 
for signal processing is however not clear. 

When the signalf(t) is real, to get a decomposition with 
real expansion coefficients, one must use dictionaries of 
real time-frequency atoms. For any y = (s, E ,  U ) ,  with 4 
# 0, and any phase 4 E [0, 2*[, we define 

The constant K(,,41 is adjusted so that 1 1  g(,,$) 11 = 1. The 
phase 4 that was hidden in the complex numbers, now 
appears explicitly as a parameter of the real atoms. The 
dictionary of real time-frequency atoms is defined by 
3 = (g(, .4,)ErX[0.2a[,  with r = R+ x R2. The matching 
pursuit performed with this dictionary decomposes any 
real signal f ( t )  into 

+m 

f ( r )  = t: (RIi.L g(,,,,4,,l ) ~ ( , r 8 , , # l d ( ~ )  ( 5 5 )  
n = O  

where the indexes (yn, 4,J = (s,,, u , ~ ,  E n ,  4,,) are chosen 
to best match the residues off. For any y = (s, E ,  U ) ,  real 
atoms are related to complex atoms by 
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-. .. - I  Y . I  

where y- = (s, - E ,  U ) .  However, one can show that the 
real matching pursuit decomposition (55) is not equiva- 
lent to the complex decomposition (42), because the two 
vectors g, ( t )  and g,- ( t )  are not orthogonal. 

The time-frequency energy distribution of a real func- 
tion f ( t )  is derived from its matching pursuit decomposi- 
tion, by summing the Wigner distribution of the under- 
lined complex atoms 

+ m  

By inserting (50) in this expression, we obtain 
+ m  

EfU, = ; I W"f, g,,,,,,!)) I *  
= n 

This distribution also satisfies the energy density property 
(53 ) .  

In signal processing applications of time-frequency 
matching pursuits, we process directly the discrete param- 
eters (yn ,  4 n )  = (sn, E n ,  uI1, 4 n )  and ( R " f ,  gyri) of the 
selected atoms, rather than the energy density E f ( t ,  w ) .  
Indeed, these parameters carry all the necessary infor- 
mation and are much easier to manipulate than the two- 
dimensional map E f ( t ,  a). This energy distribution is 
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rather used for the visualization of the structure book in- 
formation. If g(t) is the Gaussian window 

g( t )  = 2 1 P e - ~ r 2  (59) 
then 

(60) 
The time-frequency atoms g,(t) are then called Gabor 
functions. The time-frequency energy distribution E' ( t ,  
U) is a sum of Gaussian blobs whose locations and vari- 
ances along the time and frequency axes depend upon the 
parameters (sn, U,, 4,). 

As explained in Section IV, to implement efficiently a 
matching pursuit, we must avoid computing the inner 
products of the signal residues with all the dictionary vec- 
tors. The following theorem guaranties that, if we discre- 
tize appropriately the Gabor dictionary, one can obtain a 
subdictionary that satisfies the property ( 3 0 ) .  

Theorem 2: Let A u  and A t  be respectively a time and 
a frequency discretization interval that satisfy 

wg (*, U )  = 2e-2x(t2 + (w I2nP 

A t  A U  = - < 1 .  
27r 

Let a > 1 be an elementary dilation factor. Let r, be the 
discrete subset of r = Rf x R2, of all indexes y = (a  J ,  

p a ' A u ,  k a - ' A t ) ,  for ( j , p ,  k )  E Z3.  There exists a con- 
stant a > 0 such that for all f E L2 (R)  

Appendix D gives a proof of this theorem. The fast nu- 
merical implementation of a matching pursuit in a Gabor 
dictionary is based on this theorem. 

VI. DISCRETE MATCHING PURSUIT I N  GABOR 
DICTIONARIES 

We explain the discrete implementation of a matching 
pursuit for a dictionary of Gabor time-frequency atoms. 
Numerical examples are shown at the end of this section. 
We suppose that our signal is real and has N samples. The 
space H is the set of infinite discrete signals of period N .  
Due to the limitations of the sampling rate and the signal 
size, the scale s can only vary between 1 and N .  The win- 
dow function g ( t )  is the normalized Gaussian given by 
(59). To obtain a discrete and periodic signal, at any scale 
s, the window function is uniformly sampled and period- 
ized over N points 

The constant K, normalizes the discrete norm of g,. For 
any integer 0 I p < N and 0 I k < N ,  we denote y = 
(s, p ,  27rk/N) and define the discrete Gabor atom 

g ,  (n )  = g,, (n - p )  e i (2ak lN)n .  (64) 
The discrete complex Gabor dictionary is the set of all 
such atoms for s E ] 1 ,  N [ and p ,  k integers between 0 and 

N .  To this dictionary of atoms, we add the canonical basis 
of discrete Diracs and the discrete Fourier basis of com- 
plex exponentials. For y = (1 ,  p ,  0), g, (n) is a discrete 
Dirac centered at p .  For y = ( N ,  0, k ) ,  g,(n) = 

Similarly to (56 ) ,  for any y = (s, p ,  27rklN)  and $I E 
[0, 27r[, real discrete time-frequency atoms are given by 

1 , / J ~ ~ i ( 2 n k / N ) l I  

with K(,,+) such that 11 g,,4 I /  = 1. Appendix E describes 
an efficient implementation of a matching pursuit with this 
real discrete Gabor dictionary and gives information to 
obtain a copy of a matching pursuit software. The imple- 
mentation follows the general algorithm described in Sec- 
tion IV. We compute the inner products of the signal res- 
idues with the complex Gabor atoms (64 )  and recover the 
phase from the complex coefficients. As suggested by 
Theorem 2 and the implementation algorithm of Section 
IV, we only compute the inner product of the signal res- 
idues with a subset 33, = (g,),Ere of the complex Gabor 
dictionary. The index set r, is composed of all y = ( a J ,  
p a J A u ,  k K J A t ) ,  with a = 2 ,  A u  = 1 / 2 ,  A t  = T ,  

0 < j < log, N ,  0 I p < N2-J' '  and 0 I k < 2 J + 1 .  
We also add the discrete Dirac and Fourier bases to 9,. 
The number of vectors in is O ( N  log2 N ) .  The imple- 
mentation of the matching pursuit iterations is further de- 
scribed in Appendix E. The search over 9, finds the ap- 
proximate scale, time and frequency localization of the 
main signal structures. These values are then refined with 
a Newton search strategy to recover the time-frequency 
parameters that best match the signal components. Each 
iteration requires 0 ( N  log N )  operations and as much CPU 
time as a fast Fourier transform subroutine applied to a 
signal of N samples. 

Fig. l(a) is a signal f o f  512 samples that is built by 
adding chirps, truncated sinusoidal waves and waveforms 
of different time-frequency localizations. No Gabor func- 
tion have been used to construct this signal. Fig. l(b) 
shows the time-frequency energy distribution Ef(t, U ) .  

Since Ef(t, U )  = Ef(t, -U ) ,  we only display its values 
for U 2 0. Each Gabor time-frequency atom selected by 
the matching pursuit is an elongated Gaussian blob in the 
time-frequency plane. We clearly see appearing two chirps 
that cross each other, with a localized time-frequency 
waveform at the top of their crossing point. We can also 
detect closely spaced Diracs, and truncated sinusoidal 
waves having close frequencies. Several isolated local- 
ized time-frequency components also appear in this en- 
ergy distribution. The curve (a) in Fig. 2 gives the decay 
of loglo IIR"f 11 / 11 f 11 as a function of the number of iter- 
ations n. For n I 130, IIR"fII has a relatively faster de- 
cay. These iterations correspond to the coherent signal 
structures, as shown in Section VII. For n 2 130, the 
decay rate is almost constant. This confirms the exponen- 
tial decay proved by Lemma 2 .  For any n 2 0, the back- 
projection algorithm described in Section I11 recovers a 
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Fig. 1 ,  (a) Signal of 512 samples built by adding chirps, truncated sinusoidal waves and waveforms of different time-frequency 
localizations. (b) Time-frequency energy distrlbution Ef(r, w )  of the signal shown in (a). The horizontal axis is time. The vertical 
axis is frequency. The highest frequencies are on the top. The darkness of this time-frequency image increases with the value 
Ef ( t .  w )  

Fig. 2 .  The curve (a) gives the decay of log,,, IIR”fIl/llfll,  as function of the number of iterations n ,  for the signalfof Fig. 
I(a). The curve (b) gives the decay of log,,, 11 P , , f I I  / l l f \ l .  
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1 

(b) 

Fig. 3 .  (a) speech recording of the word “greasy.“ sampled at 16 kHz. (b) Time-frequency energy distribution of the speech 
recording shown in (a). We see the low-frequency component of the “g,” the quick burst transition to the “ea” and the 
harmonics of the “ea.” The “s” has an energy spread over high frequencies. 

better approximation off from the n atoms selected from 
the dictionary. The reconstruction error is then the or- 
thogonal projection offon the space W, that is orthogonal 
to the n vectors selected by the matching pursuit. The 
back-projection requires much less computation than the 
matching pursuit. The curve (b) in Fig. 2 gives the decay 

It means that the matching pursuit computes a close ap- 
proximation of the orthogonal projection offon the n vec- 
tors selected from the dictionary. For n = 300, IIR”f(( = 
1.511P~JIl. Fern = N = 512, log,, IIP~,,fll/llfll drops 
to --M because Pwnf = 0. This indicates that the N vec- 
tors selected by the matching pursuit are linearly inde- 
pendent and thus define a basis of the signal space H .  The 
relative gain of the back-projection is important when the 
number of iterations is of the order of the dimension of 
the signal space. For almost all signals f, the decays of 
IIR”fll and 11 Pwmfll have the same qualitative behavior 
as in Fig. 2. 

oflog,, I l P W “ f I l / l l f l l .  Fern 5 130, IIR“fII = IIPw,,fll. 

Fig. 3(a) is the graph of a speech recording correspond- 
ing to the word “greasy,” sampled at 16 kHz. From the 
time-frequency energy displayed in Fig. 3(b), we can see 
the low-frequency component of the “g” and the quick 
burst transition to the “ea” has many harmonics that are 
lined up but we can also see localized high-frequency im- 
pulses that correspond to the pitch. The “s” component 
has a time-frequency energy spread over a high-frequency 
interval. Most of the signal energy is characterized by few 
time-frequency atoms. For n = 250 atoms, IIR”f 11 / 11 f 11 
= 0.169, although the signal has 5782 samples, and 
the sound recovered from these atoms is of excellent 
quality. 

Fig. 4(a) shows a signal obtained by adding a Gaussian 
white noise to the speech recording given in Fig. 3(a), 
with a signal to noise ratio of 1.5 db. Fig. 4(b) is the time- 
frequency energy distribution of this noisy signal. The 
white noise generates time-frequency atoms spread across 
the whole time-frequency plane, but we can still distin- 
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Fig. 4. (a) Signal obtained by adding a Gaussian white noise to the speech recording shown in Fig. 3(a). The signal to noise 
ratio is 1.5 db. (b) Time-frequency energy distribution of the noisy speech signal. The energy distribution of the white noise is 
spread across the whole time-frequency plane. 

guish the time-frequency structures of the original signal 
because their energy is better concentrated in this plane. 

VII. NOISE AND COHERENT STRUCTURES 
Generally, the notion of noise versus signal information 

is ill-defined. Even though a signal component might carry 
a lot of information, it is often considered as noise if we 
can not make sense out of it. In a crowd of people speak- 
ing a language we do not understand, surrounding con- 
versations are generally perceived as a noise background. 
However, our attention will be attracted by an remote 
conversation in a language we know. In this case, what is 
important is not the information content but whether this 
information is in a coherent format with respect to our 
system of interpretation. A matching pursuit decomposi- 
tion in a given dictionary defines a system of interpreta- 
tion for signals. We study the notion of coherence and 
describe an algorithm that isolates signal structures that 
are coherent with respect to a given dictionary. 

Coherent signal components have a strong correlation 

with some dictionary vectors. The more coherent a signal, 
the larger the correlation ratios of the signal residues 

The matching pursuit selects vectors gYn that almost best 
correlate the signal residues. Let us denote 

Equation (1 1) implies that 

1 
x ( R " f )  I h ( R " f )  I - a! x ( R n f ) .  

For any h E H ,  the choice procedure implies that i ( h )  = 

i (h  / 11 h 1 )  ). Hence, (h)  only depends upon the position 
of h / 1 1  h 11 on the unit sphere of the signal space H .  Let W 
be a discrete Gaussian white noise. For any n 2 0, the 
average value of i ( R " f )  measured with a uniform prob- 
ability distribution over the unit sphere, is equal to the 
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expected value E(  x (R" W ) ) .  Indeed, after normalization, 
the realizations of a discrete Gaussian white noise have a 
uniform probability distribution over the unit sphere of H .  
We define the coherent structures of a signal f as the first 
m vectors ( gyJ0 < ,,, that have a higher than average cor- 
relation with R" f. In other words, f has m coherent struc- 
tures if and only if for 0 I n < m 

X ( R " f )  > E ( X ( R " W ) )  (69) 

x ( R " f )  I E ( x ( R " W ) ) .  (70) 

and 

Equation (13) proves that x ( R n f )  is related to the de- 
cay of I l ~ " f l I  by 
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One can verify that for a Gabor dictionary, the signal 
shown in Fig. l(a) has m = 130 coherent structures that 
correspond to the iterations where the IIR"fII has a rela- 
tively faster decay in Fig. 2. 

For all the dictionaries that we studied numerically, we 
have observed that when n increases, E (  x (R" W ) )  con- 
verges quickly to a constant E(X(R"  W ) ) .  In fact, the 
process R" W seems to converge to a process R" W that 
we call dictionary noise, whose properties are now being 
studied. The realizations of a dictionary noise have an en- 
ergy that is uniformly spread across the whole dictionary. 
For a Gabor dictionary this process is a stationary white 
noise, that is not Gaussian. The curve (c) in Fig. 5 gives 
the value of E (  X (R" W ) )  as a function of n ,  for a discrete 
Gaussian white noise of 5762 samples, decomposed in a 
Gabor dictionary. The limit is E(X(R"  W ) )  = 0.0506. 

The curve (a) in Fig. 5 gives the value of x ( R " f )  as a 
function of n for the speech recording f shown in Fig. 
3(a). The number of coherent structures is the abscissa of 
the first intersection between curves (a) and (c), which is 
located at n = 698. We have observed numerically that 
after removing the coherent structures from a signalf, the 
residue R"f behaves like a realization of the dictionary 
noise R" W.  This property remains to be studied more 
precisely. The curve (b) in Fig. 5 gives the value of 
x ( R " f )  for the noisy speech signal in Fig. 4(a). The noise 
has destroyed the low-energy coherent structures and only 
76 coherent structures remains at an SNR of 1.5 db. Fig. 
6(a) is the time-frequency energy distribution of these 
m = 76 coherent structures. Fig. 6(b) is the signal recon- 
structed from these time-frequency atoms. The SNR of 
the reconstructed signal is 6.8 db. The white noise has 
been removed and this signal has a good auditory quality 
because the main time-frequency structures of the original 
speech signal have been retained. 

VIII. WAVEPACKET DICTIONARY 
A wavepacket dictionary is a family of orthonormal 

bases composed of vectors that are well localized both in 
time and frequency. It is computed with a quadrature mir- 

0=51 0 2  
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Fig. 5 .  The curve (c) is a plot of E ( i ( R " W ) )  as a function of n ,  for a 
discrete Gaussian white noise of 5762 samples. The curves (a) and (b)  give 
the values of R ( R " f )  for the speech signal in Fig. 3(a) and the noisy speech 
signal in Fig. 4(a). 

ror filter bank algorithm [ 151. Through our numerical ex- 
periments with wavepacket dictionaries, we intend to 
compare matching pursuit decompositions with the best 
basis algorithm of Coifman and Wikerhauser [4], that se- 
lects an "optimal" orthonormal basis within the wave- 
packet dictionary. This highlights the respective advan- 
tages of procedures that globally adapt the signal 
representation versus the greedy strategy of a matching 
pursuit, that locally optimizes the decomposition. 

For signals of N samples, each vector g ,  of a wave- 
packet dictionary is indexed by y = ( j ,  p ,  k ) ,  with 0 I 
j 5 log, ( N ) ,  0 I p I 2 - ] N ,  0 I p I 2 J .  Suchavector 
has a similar time-frequency localization properties as a 
discrete window function, dilated by 2 J ,  centered at 2 ' ( p  
+ 1 /2), and modulated by sinusoidal wave of frequency 
27r2-l ( k  + 1 /2). The wavepacket dictionary a> = ( g7)7EI 
includes ( N  + 1) log, ( N )  vectors. For any discrete signal 
f ( n )  of N samples, the inner products ( ( f ,  g, are 
computed with a filter bank algorithm based on quadrature 
mirror filters, that requires O(N log? ( N ) )  operations [4]. 
The implementation of the matching pursuit decomposi- 
tion follows the general outline of the algorithm described 
in Section IV. In this case, we set the optimality factor CY 
to 1 and search over the whole dictionary D because it is 
not to large. To compute the inner product updating for- 
mula (33), we calculate the inner product of wavepacket 
vectors from the coefficients of the quadrature mirror fil- 
ters [4]. Each matching pursuit iteration requires 0 ( N  log, 
( N ) )  operations. 

Fig. 7(a) shows the structure book ( ( R " f ,  g,,$ >, y n ) , , € ~  
of the signal in Fig. l(a), with the display conventions of 
Coifman and Wickerhauser [4]. The wavepacket 
dictionary is built with the Daubechies 6 quadrature mir- 
ror filters [SI. The horizontal and vertical axes of Fig. 10 
are respectively the time and frequency axes. Each vector 
&,,, for yfr = (jn, k,,,  p,,), is represented by a rectangle 
which is centered at the time 2 J " ( p , l  + 1/2)  and at the 
frequency 2a2-'"(kn + 1 /2 ) .  This rectangle has a width 
of 2 ''I along time and 2-J"7r along frequencies. It gives an 
approximate idea of the localization in time and frequency 
of the atom gYn,  but it reality gYt, is much more spread in 
time and frequency than the zone indicated by its rectan- 
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Fig. 6.  ( a )  Tlme-trequency energy di\trihution 0 1  the VI = 76 coherent structures o f  the noihy speech signal \houri in Fig. 4 .  

( b )  Signal reconstructed Irom the 79 cohcrent structures shown in  ( a ) .  The whlte noise has  heen reiiioved. 

(a) (b) 

Fig. 7 .  (a) Time frequency display ( i t  the  \*a\cpacket structurc hook of the hignal hhonn i n  Fig. I ( a )  Each rectangle roughly 
represents the location and time-frcqurnc) \preiid 01 a selccted wavepacket function (hl  Time-frequency display nf the signal 
in Fig. I ( a )  decomposed i n  the he\t wa\epacket orthonormal basis. 
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gle. Wavepacket functions are not as well localized in time 
and frequency as Gabor functions. When the scale 2' in- 
creases, these atoms have a complicated time-frequency 
localization studied by Coifman, Meyer and Wickerhau- 
ser [3]. The time-frequency image obtained with this 
wavepacket dictionary is similar to the energy distribution 
in Fig. l(b), obtained with Gabor dictionary. Some signal 
features do not appear as clearly because wavepackets are 
not as well localized in time and frequencies as Gabor 
functions. Moreover, wavepacket functions do not in- 
clude a phase parameter and thus can not match signal 
components as well Gabor functions. We must also men- 
tion that the Gabor dictionary includes Gabor functions 
translated in time and frequency over a much finer grid 
than wavepackets, so that the different time-frequency 
signal features can be located more precisely. Although 
the Gabor dictionary is much larger than the wavepacket 
dictionary, the matching pursuit does not require much 
more calculations because we limit most of the compu- 
tations to a subdictionary Da that is approximately of the 
same size as the wavepacket dictionary. 

By combining the vectors of a wavepacket dictionary, 
Coifman and Wickerhauser [4] proved that we can build 
2N different orthonormal bases. They have introduced an 
algorithm that finds the orthonormal basis ( g,,t)I of 
D which minimizes the entropy 

N 

c I ( f ,  & ) I 2  log2 ( 1  ( f ,  g,") 1 2 > .  (72) 
n =  1 

The choice of this "optimal" orthonormal basis is thus 
obtained through a global minimization over all the signal 
components. Fig. 7(b) displays the structure book ( (  f ,  
g , , ) ,  Y , , ) , , ~ ~  that is obtained by decomposing the signal 
of Fig. l(a) in the optimal wavepacket orthonormal basis. 
One can hardly distinguish many of the signal compo- 
nents, including the two chirps. The entropy optimization 
creates a competition between the signal components that 
are in the same frequency range, but have different time- 
frequency signatures. Since the signal is not stationary, 
the global entropy minimization is driven by the transients 
of highest energy. It leads to a choice of orthonormal ba- 
sis that is well adapted to represent the corresponding 
transients, but not to represent other signal structures that 
have different time-frequency behaviors. For highly non- 
stationary signals, the entropy minimization produces 
mismatch between the "best" orthonormal basis and 
many local signal components. On the contrary, a match- 
ing pursuit is a greedy algorithm that locally optimizes the 
choice of the wavepacket function, for each signal resi- 
due. It can thus adapt itself to varying structures. On the 
other hand, this greedy strategy requires more computa- 
tions than the best basis decomposition algorithm, whose 
total complexity is O(N log N ) .  The best basis algorithm 
is thus better suited to represent simpler signals that have 
stationary properties. The global optimization is then valid 
locally, and yields good results. 

IX. CONCLUSJON 
Matching pursuits provide extremely flexible signal 

representations since the choice of dictionaries is not lim- 
ited. We showed that time-frequency dictionaries yield 
adaptive decompositions where signal structures are rep- 
resented by atoms that match their time-frequency signa- 
ture. The properties of the signal components are explic- 
itly given by the scale, frequency, time and phase indexes 
of the selected atoms. This representation is therefore well 
adapted to information processing. 

Compact signal coding is another important domain of 
application of matching pursuits. For a given class of sig- 
nals, if we can adapt the dictionary to minimize the stor- 
age for a given approximation precision, we are guaran- 
teed to obtain better results than decompositions on 
orthonormal bases. Indeed, an orthonormal decomposi- 
tion is a particular case of matching pursuit where the 
dictionary is the orthonormal basis. For dictionaries that 
are not orthonormal bases, we must code the inner prod- 
ucts of the structure book but also the indexes of the se- 
lected vectors. This requires to quantize the inner product 
values and use a dictionary of finite size. The matching 
pursuit decomposition is then equivalent to a multistage 
shape-gain vector quantization in a very high dimensional 
space. 

For information processing or compact signal coding, 
it is important to have strategies to adapt the dictionary to 
the class of signal that is decomposed. Time-frequency 
dictionaries include vectors that are spread between the 
Fourier and Dirac bases. They are regularly distributed of 
the unit sphere of the signal space and are thus well 
adapted to decompose signals over which we have little 
prior information. When enough prior information is 
available, one can adapt the dictionary to the probability 
distribution of the signal class within the signal space H .  
Learning a dictionary is equivalent to finding the impor- 
tant inner structures of the signals that are decomposed. 
Classical algorithms such as LBG to optimize codebooks 
[9] do not converge to satisfying solutions in such high 
dimensional vector spaces. Finding strategies to optimize 
dictionaries in high dimensions is an open problem that 
shares similar features with learning problems in neural 
networks. 

APPENDJX A 
PROOF OF THEOREM 1 

This appendix is a translation in the matching pursuit 
context of Jones's proof [ 1 11 for the convergence of pro- 
jection pursuit regressions. 

Lemma 3: Let h, = ( R " f ,  g,,) g?,,. For any IZ 1 0 and 
m 1 0  

(73) 
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Equation (1 1) implies 

(75) 

Lemma 4: If (s,,),~~ is a positive sequence such that 
C:Zos:  I +m, then 

n 

lim inf s,, C sk = 0. (76) 
n- + m  k = O  

Proof: For any E > 0, we choose n such that 
sk = 0, we can choose k 
si I ~ / 2 .  Let sj be the 

s' 5 ~ / 2 .  Since limk, 
large enough such that sk 
minimum element for indexes between n + 1 and k 

To prove Theorem 1, we prove that the sequence 
(R"f),.. is a Cauchy sequence. Let N L 0 and M L 0 

IIRNf - R"fl1' = 1 1  R'f - R M f  + h,, (78) 
M - '  II = N ll 

= IIR"fII' + llRMfl12 - 2llR"f 1 1 2  
M -  1 

- 2 2 Real <R'f, A n ) .  (79) II = N 

Lemma 3 implies that 

IIR"f - RMfl12 
M -  I 2 

5 1IR.f \ I 2  - IIR"f 1 1 2  + - Ilh,wll l\hnll. (80) 

The energy conservation equation (1 3) proves that the 
sequence ((IR" f I ( ) n E N  is monotonically decreasing and 
thus converges to some value R,. Let E > 0, there exist 
K > 0 such that for all m > K ,  1IR"f ( I 2  5 R L  + t 2 .  Let 
p > 0. We want to estimate 1IR"f - R m + p f  1 1 ,  for m > 
K .  Equation (17) proves that ( ( R " f ,  gy,,)12 = 
E ,, = llhn(l* 5 Ik ( I 2  < + 00, hence Lemma 4 implies that 
there exist q > m + p such that 

CY n = N  

+ m  

q 

n = O  
IlhJ llh,ll 5 E 2 .  (81) 

We can decompose 

IIR"f - R"+Pf I1 
I IIR"f - R'f ) I  + \lR1"+pf - Rqf  ( I .  (82) 

Equation (80) for N = m and M = q implies 

L 
1IR"f- R q f ( I 2  I E *  + - E ' .  ( 8 3 )  a 

Similarly, 

(84) 2 2  l l R r l l + p f -  Rqf  1)' I t 2  + - E . 
CY 

Hence, 

1IR"f- Rm+pf l l  I ~ J 2 ( 1  +  CY), (85) 
which proves that (R"f) , ,GN is a Cauchy sequence. Let 

R"f = lim R"f.  
1 1 -  + m  

We know that limn + + m  1 ( R " f ,  g,,?) 1 = 0. Since, 

I(W? g,,Y CY SUP I(R"f9 g,,Y 
, E l '  

for any y E r, limn + +, 1 ( R ' f ,  g,) 1 = 0, and thus I (R"  f ,  
g,)( = 0. This implies that R"f  E W. Since, 

+ m  

f = c (R"f7 &,,)&,, + R"f  (86) 
11 = 0 

APPENDIX B 
PROOF OF LEMMA 1 

If this lemma was wrong, one could construct a se- 
quence of unit vectors ( J ; J n E N  and the sequence ( &),,€. 
of decreasing real numbers converging to zero such that 
for all n L 0 

Since the unit sphere of the finite dimensional space H is 
compact, there exists a subsequence ( f n J P E N  that con- 
verges to a unit vector f E H .  Hence 

lim I < f ,  g,>( = lim SUP I < f n , ,  g,)l 
YET / I - +  + m  ,el 

5 lim A,,, = 0. (90) 
1, -1 t m 

Since f has a norm 1,  the inner product which each ele- 
ment of 33 can not be zero since 33 is complete and thus 
includes at least a basis of H .  This contradicts our as- 

0 sumption, which finishes the proof. 

APPENDIX C 

COVARIANCE 
DILATION, TRANSLATION, A N D  MODULATION 

We say that a subset A of r is admissible and associated 

(91) 

to f E L' (R) if 

A = { P  E I?: ( (  f, go)] 2 a sup I < f ,  gy) \ } .  
Y E 1  
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Let A be an admissible set and ( a ,  b, c) E R +  X R 2 .  Let 

A choice function C is said to be covariant if and only if 
for any admissible set A, C(A) = (so, uo, Eo) implies that 

If we restrict our signal space to functions that are bounded 
and absolutely integrable, the matching pursuit residues 
are also bounded and absolutely integrable. An example 
of covariant choice function can then be defined as fol- 
lows. For any admissible set A, associated to a bounded 
and absolutely integrable function, C(A) = (sl, U I ,  El), 
such that sI = sup{s: 3(u, 4 )  E R 2 ,  (s, U ,  E) E A } ,  u l  = 

sup{u: 3 E  E R ,  (sl ,  U ,  E) E A } ,  and E l  = sup{E: 0 1 ,  UI, 

4 )  E A}.  The following lemma proves that the index (sl, 
U', t l )  is well defined and belongs to A .  

Lemma 5: For any admissible set A, associated to a 
bounded and absolutely integrable function, (sl, u I ,  E I )  E 

A. 
Proofi let A be an admissible index set associated to 

f .  Since g( t )  is bounded andf(t) is absolutely integrable, 
one can prove that 

lim sup I < f ,  g,>l = 0. 

We can thus derive that there exist a finite s I  that is the 
supremum of all s such that (s, U ,  E) E A. Since A is 
closed, there exists (sI, U ,  E) E A .  Since 

lim I g(t)I = 0 
I f 1  - QI 

and f ( t )  is absolutely integrable, we can prove that for 

s- + m  ( u . E ) e R Z  

y = (SI, U ,  E)? 
lim sup I < f ,  g,>l = 0.  

u + + m  E E R  

We can then derive that there exists ui that is the supre- 
mum of all u such that ( s I ,  U, 4 )  E A .  Since A is closed, 
there exists 4 such that (sI ,  u I ,  E) E A. Since 

lim IS (w) I  = 0 

andf(w) is absolutely integrable, we can prove that for 

lim I < f ,  s,>l = 0. 

We can finally derive that E l  that is the supremum of all 
4 such that (sI ,  u l ,  E) E A. Since A is closed, ( s I ,  u I ,  t , )  

0 
Let us prove the covariance of a matching pursuit based 

lw l  " 

Y = ( $ 1 3  U I ?  E), 

E -  + m  

E A. This finishes the proof of the lemma. 

on covariant choice functions. Let us define 

f l ( t )  = -fO ~ & ( t  
(94) 

Let y I = (s, U ,  4 )  and y o  = ( s / a ,  (U - c ) / a ,  a ( (  - b)) .  
With a change of variable, we prove that 

( f ' ,  g,,) = ( f ' ,  gyo). (95) 

Hence supYEr I < f l ,  g,>l = d supyEr I < f o ,  g ,>(. Let us 
define 

(96) 

defined in (92), 

A = { P E  r: I < f l ,  gp)J  L QI sup I < f l ,  g,>l}. 

Equation (95) proves that the set 
also satisfies 

A(u,t,.c) = { P  E r :  I < f o ,  gp)l 2 QI SUP I ( f o l  & ) I } .  
Yfr 

(97) 

The covariance of the choice function implies that if C(A) 
= = (so, uo, Eo), then c ( A ( u , b , c . ) )  = 7; = ( so /a ,  (uo 
- c ) / a ,  a (Eo - b)) .  We can thus derive that 

Similarly, we can prove by induction that for any n L 0 

and if - y i  = (s,, U,, E j )  then 7; = ( s , /a ,  (U, - c ) / a ,  
a(E, - b)) ,  and 

(R"fO, gyp. (100) dei'(h Ed ( R " f  I, g,;,) = 

Conversely, if the residues offo(t) andf (t) satisfies these 
equalities, (42) proves that (94) is satisfied. Hence, a 
matching pursuit based on covariant choice functions is 
covariant by dilation, translation and modulation. 

APPENDIX D 
P R O O F  O F  THEOREM 2 

We denote g j , p , k ( t )  = g,(t) for y = ( a J ,  p a J A u ,  
ka-JAE) E ra. Since A u  = A [ / 2 a  and A u A E  < 2 a ,  
Daubechies [6] proved that for the Gaussian window g (t) 
specified by (59),  ( g O , p , k ( t ) ) ( p . k ) c Z z  is a frame of L 2 ( R ) .  
The dual frame is given by ( g O , p , k ( t ) ) f p , k ) c Z ~ ,  where g ( t )  
E L 2 ( R )  and 

The dual window g(t) has an exponential decay and its 
Fourier transform g ( w )  also has an exponential decay [ 5 ] .  
For anyfE L 2 ( R ) ,  

+ m  + m  

f ( t )  = (.f, g O . p , k ) g O , p , k ( t ) .  (lo2) 
* = - m  k = - m  
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(105) 

Let us now prove that there exists a finite constant K such 
that for all yo 

With a change of variable, we derive that 

* ( g ( t  + a-'u - pAu)l dr. (110) 

Since 1 /& 5 a ' / s  I &, and since both g ( t )  and g(r )  
have an exponential decay, one can derive that there ex- 
ists two constant C1 > 0 and D1 > 0 that satisfy (107). 
To prove ( log) ,  we observe that 

+m 

( ( & ? j . p , k ,  Ig~ ,p ,k(~)I  I g - , t ~ ( ~ ) \  &d. ( l l 1 )  

From the expression of gJ,p,k(w)  in ( 5 ) ,  with a change of 
variable we derive that 

. Ig(w + u ' E  - kAE)l  dw. (112) 

two constant C2 and D2 that satisfy (108). From the upper 
bounds (107) and (108) we can show that the sum S,, of 

____ 

3413 

(106) is bounded by a finite constant K that is independent 
of yo. From (105), we derive that any constant a 5 1 / K  
satisfies the condition (62) of Theorem 2.  

APPENDIX E 
MATCHING PURSUIT IMPLEMENTATION WITH GABOR 

DICTIONARIES 
This appendix describes the numerical implementation 

of a matching pursuit for a Gabor dictionary (Instructions 
to obtain a free copy of the software implementing this 
transform are available through anonymous ftp at the ad- 
dress cs.nyu.edu, in the file README of the directory/ 
publwavelsoftware). 

For any y = (s, p ,  2ak/N)  and 4 E [0, 2a[,  real dis- 
crete time-frequency atoms are related to complex atoms 
by 

One can derive that the normalization constant is 

3 (114) 
Jz 

1 + Real (ei2'( g,, g,-)) K ( 7 . 6 )  = 
J 

where Real ( z )  is the real part of the complex number z .  
For any residue R"f ,  

By choosing 4 equal to the complex phase 4? of ( R " f ,  
g,) , we obtain 

(Real (e- i@'7(R"f ,  g,>)l = I(R"f,  g,>(. (116) 

We search for an index Y n  that maximizes I (R"  f ,  g, ) I for 
y in the subset ra of r. With a Newton algorithm, we 
then look in the neighborhood of Y n  in r for an index y n  
= (sn, p n ,  2nk,/N) E r, where I (R" f ,  g,)( reaches a 
local maxima. One can verify that there exists a > 0 such 
that 

Since, 

for the next iteration we must compute for any y E r, 

We therefore estimate 
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To compute fast this inner product, we use an analytical 
formula that gives the inner product of two discrete com- 
plex Gabor signals. This formula is derived from the fol- 
lowing lemma. 

Lemma 6: Let f ( t )  and h( t )  be two continuously dif- 
ferentiable functions such thatf(t) = 0 ( 1 / ( 1  + t 2 ) )  and 
h ( t )  = 0 ( 1 / (  1 + t 2 ) ) .  Letfd and hd be the discrete signals 
of period N defined by 

+m 

+ m  f m  ~ f m  

= C c f ( t ) h ( t  - mN)eiZY“‘ dt .  
m =  -m q =  -m --m 

(123)  
Proof: 

N 

N f m  i m  

= f ( n  + q N )  h(n + m N )  
, ! = I  q = - m  tn = - 

+m + m  

= c f ( p )  c h ( p  + m N ) .  (124)  
p =  --CO * =  -m 

Hence, 
+ m  f m  

n + m  

* I 
Let us recall the Poisson formula 

f ( t ) h ( t  + mN)G(t  - p )  dt. (125)  
-m 

+ m  +m 

( 126) C s ( t  - p )  = e h r  
p =  - m  q =  -m 

Jnserting this in (125)  yields ( 1 2 3 ) .  This finishes the proof 
of the lemma. U 

For y l  = (s,, P I ,  2 - a k l / N )  and y2 = ( s 2 ,  p 2 ,  2 -ak2 /N)  
and g ( t )  given by (59), one can derive from (123)  of 
Lemma 6 that the inner product of two discrete Gabor 
signals is 

When g,, or g,, is a discrete Dirac or a discrete complex 
exponential, different formula must be used. If we limit 
the computation to a precision E ,  for any Gabor atom 
g,,, there are 0 ( N m )  other vectors gy, such that 
(g,,, gy2) is not negligible. One can show that (127)  re- 
quires O ( N  llog ~ 1 ~ ’ ~ )  operations to compute the inner 
product of any atom g,, with all other discrete atoms 
(g,),era. The total numerical complexity for one match- 
ing pursuit iteration is O ( N  log N ) .  By tabulating the 
Gaussian and complex exponential functions, each itera- 
tion requires approximately as much CPU time as a Fast 
Fourier Transform on a signal of N samples. In the ex- 
periments shown in this paper, we restricted the scale s, 
of the selected atoms to powers of 2, to minimize the 
memory required by the tabulation. However, choice of 
s, may have no such restriction, if we do not use any tab- 
ulation. 
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