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Motivation

Wishlist:

▶ Minimal latency

▶ Minimal energy/arithmetic/memory

▶ Good quality and clarity

Tasks:


Speech enhancement
Live translation
. . .

Here: Spectrogram-based methods
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Waveforms & Spectrograms

▶ Spectrograms→ nice!

▶ Phases→ messy! (irregular & 2π-periodic)

▶ Missing phase→ Inverse STFT not trivial

▶ Modified spectrograms may be inconsistent

Here: Real-Time Spectrogram Inversion (RSI)
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Efficient Neural and Numerical Methods

…for real-time spectrogram inversion. Improvements on previous 2-stage work:

GL RTISI SPSI GT+DL Ours

Low-latency 7 3 3 3 3

Low-compute 7 7 3 7 3

High-quality 7 7 7 3 3

▶ ∼30x smaller/faster causal CNN

▶ Extra 2x at cost of 1 hop in latency

▶ Linear-complexity least-squares
solver
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Background



Consistency and Correctness

Griffin-Lim (Griffin et al. 1983)

Alternating GL projections (from Peer et al. 2022)

▶ Initialize: Ŷ← (|Y|,ϕ) for some phase ϕ
▶ Consistency: Ŷ← STFT ◦ iSTFT ◦ Ŷ
▶ Correctness: Ŷ← |Y| Ŷ

|Ŷ|

▶ Recovery: ŷ← iSTFT ◦ Ŷ

RTISI (Beauregard et al. 2005)

GL on the current frame alone (from Zhu et al. 2007)

Real-time, but…

▶ Requires iterations

▶ Artifacts
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Single-Pass Spectrogram Inversion

SPSI (Beauregard et al. 2015)

▶ Assume Instantaneous Frequency

▶ Initialize frame: Ŷτ ← (|Y|τ ,ϕτ )

▶ Inst. Freq.: ω ← spectral peaks in Ŷτ

▶ Propagate phase: ϕτ+1 ← ϕτ + ∂τ · ω

Iteration-free, but strong assumption→ artifacts
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Increasing Quality with Better Assumptions

Gradient Theorem (Portnoff 1979): for Gaussian STFT window φλ(t) :=e−π t2
λ ,

∂
∂ω Arg(Yy,φλ

(ω, t)) = −λ ∂
∂t log|Yy,φλ

(ω, t)|

∂
∂t Arg(Yy,φλ

(ω, t)) = 1
λ

∂
∂ω log|Yy,φλ

(ω, t)|+ 2πω

 Efficient numerical integration via RTPGHI
algorithm (Průša et al. 2016)

Powerful!
▶ Minimal latency, ∂ is local

▶ No assumptions on y, only φ

▶ Still, error due to discretization and
non-Gaussian φ
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Two-Stage Framework with Deep Learning

Two stages (Masuyama et al. 2023):
▶ Predict ∂Φ from ∂|Y| using DL
▶ Reconstruct Φ from ∂Φ via complex

least-squares

Two-stage GT+DL framework from Masuyama et al. 2023

Complex least-squares:

z(♮) = arg min
z
∥z− (Y[ω, τ-1]⊙ vτ )∥2Λ︸ ︷︷ ︸

τ -term

+ ∥Dτz∥2Γ︸ ︷︷ ︸
ω-term

= (Λ+ DH
τΓDτ︸ ︷︷ ︸

A

)−1 Λ(Y[ω, τ-1]⊙ vτ )︸ ︷︷ ︸
b

▶ v: transition from τ − 1 to τ

▶ Dz: transition from ω to ω + 1

▶ Weights Λ,Γ to ignore small magnitudes

▶ Linear solver z(♮)=A−1b for frame τ

▶ Desired phase is Arg(z(♮))
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Training the DNN: Phases are not DL-friendly!

(Recall the GT:)

∂

∂ω
Arg(Yy,φλ(ω, t)) = −λ

∂

∂t
log|Yy,φλ(ω, t)|

∂

∂t
Arg(Yy,φλ(ω, t)) =

1

λ

∂

∂ω
log|Yy,φλ(ω, t)|+ 2πω

log |Y| Arg(Y) ∂
∂ω Arg(Y)

Two main issues→ Solutions!

▶ Irregularity → Train on derivatives!

▶ Takamichi et al. 2018; Takamichi
et al. 2020; Thieling et al. 2021;
Thien et al. 2023

▶ 2π periodicity → Von-Mises Loss!

▶ −
∑

ω

∑
τ cos(X[ω, τ ]−X̂[ω, τ ])

▶ Takamichi et al. 2018; Thien et al.
2021
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Increased computation in Masuyama et al. 2023

DNN:6 248k params
7.95 GMAC/s

Complex Least-Squares: Solving z=A−1b

z(♮)0 = (Λτ0 + Dτ0Γτ0Dτ0︸ ︷︷ ︸
A

)−1 Λτ0(Y[ω, τ-1]⊙ vτ0)︸ ︷︷ ︸
b

Solving z=A−1b:

▶ Memory: O(L2) for STFT window of size 2L

▶ Naive inversion of A isO(L3)

▶ Iterative solvers: (κ(L+ 1)2) for κ iterations (Demmel 1997)

▶ Performed for every frame

Very high quality, but at increased cost

9/13



Contributions



Faster and Smaller First Stage

▶ Cheaper, FFW layers (BN, Conv1x1,
LReLU)

▶ Less residual and gated convs

▶ Joint FPD and BPD

▶ Training: Adam with CosineWR schedule

Faster and smaller:
▶ Params: 248k → 8.5k (∼30×)

▶ GMAC/s: 7.95 → 0.27 (∼30×)

▶ 2x faster, +1hop latency (⋆)
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Linear-Complexity Second Stage

Recall: solving z=A−1b has complexity∼O(κ·L2):

z = (Λ+ DHΓD︸ ︷︷ ︸
A

)−1 Λ(Y⊙ v)︸ ︷︷ ︸
b

Observation: A is PSD and tridiagonal!

DHΓD =

L∑
l=1

γl(d̄lel+el+1)(dlel+el+1)
T

=

L∑
l=1

γl
(
|dl|2 eleT

l︸︷︷︸
diag.

+ el+1eT
l+1︸ ︷︷ ︸

diag.

)
+

L∑
l=1

γldl el+1eT
l︸ ︷︷ ︸

subdiag.

+

L∑
l=1

γld̄l eleT
l+1︸ ︷︷ ︸

superdiag.

Thomas’ Algorithm→O(L) memory and arithmetic!
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Retaining High Quality

Intelligibility & Quality

▶ Inversion of LibriSpeech consistent spectrograms

▶ Consistently good results on both axes

▶ Strided version also competitive

▶ Variation study supports design choices

More results & samples
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Thank you!

Conclusion:

▶ Low latency and high quality from DL +
Gradient Theorem

▶ Tiny causal CNN for joint BPD/FPD
▶ 2x inference at 1-hop extra latency

▶ Linear-complexity LSTSQ phase recovery

Future work:

▶ Subjective metrics

▶ Inconsistent/modified spectrograms

▶ Noisy phase as prior during inference

▶ Differentiable second stage
▶ Λ,Γ as ℓ2 regularizers for DNN

Jesus M. Alvarez
Meta RL (Spain)

Juan Azcarreta
Meta RL (UK)

Çağdaş Bilen
Meta RL (UK)
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Complex Least-Squares from Masuyama et al. 2023: Details

Phase addition schematic from Masuyama et al. 2023
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