Efficient Neural and Numerical Methods for High-Quality Online Speech Spectrogram Inversion via Gradient Theorem

Andres Fernandez, Juan Azcarreta, Çağdaş Bilen, Jesus M. Alvarez

a.fernandez@uni-tuebingen.de, jsmalvarez@meta.com

Meta Reality Labs

Motivation

Wishlist:

- Minimal latency
- Minimal energy/arithmetic/memory
- Good quality and clarity

Tasks: Speech enhancement Live translation

Here: Spectrogram-based methods

Waveforms & Spectrograms

- ► Spectrograms \rightarrow nice!
- ▶ Phases \rightarrow messy! (irregular & 2π -periodic)
- lacksquare Missing phase ightarrow Inverse STFT not trivial
- Modified spectrograms may be inconsistent

Here: Real-Time Spectrogram Inversion (RSI)

Efficient Neural and Numerical Methods

...for **real-time** spectrogram inversion. Improvements on previous 2-stage work:

GL	RTISI	SPSI	GT+DL	Ours
X	1	/	/	/
X	X	1	X	1
X	X	X	✓	✓
	GL X X X	GL RTISI X X X X X	GL RTISI SPSI X ✓ ✓ X X ✓ X X X	GL RTISI SPSI GT+DL X ✓ ✓ X X ✓ X X X X ✓

- ➤ ~30x smaller/faster causal CNN
- ► Extra 2x at cost of 1 hop in latency
- ► Linear-complexity least-squares solver

Consistency and Correctness

Griffin-Lim (Griffin et al. 1983)

Alternating GL projections (from Peer et al. 2022)

- lacksquare Initialize: $\hat{\mathbf{Y}} \leftarrow (|\mathbf{Y}|, \phi)$ for some phase ϕ
- ► Consistency: $\hat{\mathbf{Y}} \leftarrow \mathsf{STFT} \circ \mathsf{iSTFT} \circ \hat{\mathbf{Y}}$
- ► Correctness: $\hat{\mathbf{Y}} \leftarrow |\mathbf{Y}| \frac{\hat{\mathbf{Y}}}{|\hat{\mathbf{Y}}|}$
- ▶ Recovery: $\hat{\mathbf{y}} \leftarrow \mathsf{iSTFT} \circ \hat{\mathbf{Y}}$

RTISI (Beauregard et al. 2005)

GL on the current frame alone (from Zhu et al. 2007)

Real-time, but...

- Requires iterations
- Artifacts

Single-Pass Spectrogram Inversion

- ► Assume Instantaneous Frequency
- ullet Initialize frame: $\hat{ extbf{Y}}_ au \leftarrow (| extbf{Y}|_ au, \phi_ au)$
- lacksquare Inst. Freq.: $oldsymbol{\omega} \leftarrow$ spectral peaks in $\hat{oldsymbol{Y}}_{ au}$
- $lackbox{ Propagate phase: } \phi_{ au\!+\!1} \leftarrow \phi_{ au} + \partial au \cdot oldsymbol{\omega}$

Iteration-free, but strong assumption \rightarrow artifacts

Increasing Quality with Better Assumptions

Gradient Theorem (Portnoff 1979): for Gaussian STFT window $\varphi_{\lambda}(t) := e^{-\pi \frac{t^2}{\lambda}}$,

$$\left. \begin{array}{ll} \frac{\partial}{\partial \omega} \operatorname{Arg}(Y_{y,\varphi_{\lambda}}(\omega,t)) & = -\lambda \frac{\partial}{\partial t} \log \lvert Y_{y,\varphi_{\lambda}}(\omega,t) \rvert \\ \\ \frac{\partial}{\partial t} \operatorname{Arg}(Y_{y,\varphi_{\lambda}}(\omega,t)) & = \frac{1}{\lambda} \frac{\partial}{\partial \omega} \log \lvert Y_{y,\varphi_{\lambda}}(\omega,t) \rvert + 2\pi\omega \end{array} \right\}$$

Efficient numerical integration via **RTPGHI** algorithm (Průša et al. 2016)

Powerful!

- lacktriangle Minimal latency, ∂ is local
- No assumptions on \mathbf{y} , only φ
- \blacktriangleright Still, error due to discretization and non-Gaussian φ

Two-Stage Framework with Deep Learning

Two stages (Masuyama et al. 2023):

- ightharpoonup Predict $\partial \Phi$ from $\partial |\mathbf{Y}|$ using DL
- Reconstruct Φ from $\partial \Phi$ via complex least-squares

Two-stage GT+DL framework from Masuyama et al. 2023

Complex least-squares:

$$\begin{split} \mathbf{z}^{(\natural)} &= \underset{\mathbf{z}}{\arg\min} \underbrace{ \|\mathbf{z} - (\mathbf{Y}[\omega, \tau_{\text{-}1}] \odot \mathfrak{v}_{\tau})\|_{\mathbf{\Lambda}}^2}_{\tau\text{-term}} + \underbrace{ \|\mathbf{D}_{\tau}\mathbf{z}\|_{\mathbf{\Gamma}}^2}_{\omega\text{-term}} \\ &= (\underbrace{\mathbf{\Lambda} + \mathbf{D}_{\tau}^{\mathsf{H}}\mathbf{\Gamma}\mathbf{D}_{\tau}})^{-1} \underbrace{\mathbf{\Lambda}(\mathbf{Y}[\omega, \tau_{\text{-}1}] \odot \mathfrak{v}_{\tau})}_{\mathbf{b}} \end{split}$$

- \blacktriangleright v: transition from $\tau-1$ to τ
- **Dz**: transition from ω to $\omega+1$
- lackbox Weights $oldsymbol{\Lambda}, oldsymbol{\Gamma}$ to ignore small magnitudes
- ► Linear solver $\mathbf{z}^{(\natural)} = \mathbf{A}^{-1}\mathbf{b}$ for frame τ
- ▶ Desired phase is $Arg(z^{(\natural)})$

Training the DNN: Phases are not DL-friendly!

(Recall the GT:)

$$\begin{split} &\frac{\partial}{\partial \omega} \operatorname{Arg}(Y_{y,\varphi_{\lambda}}(\omega,t)) = -\lambda \frac{\partial}{\partial t} \log \lvert Y_{y,\varphi_{\lambda}}(\omega,t) \rvert \\ &\frac{\partial}{\partial t} \operatorname{Arg}(Y_{y,\varphi_{\lambda}}(\omega,t)) = \frac{1}{\lambda} \frac{\partial}{\partial \omega} \log \lvert Y_{y,\varphi_{\lambda}}(\omega,t) \rvert + 2\pi \omega \end{split}$$

Two main issues \rightarrow Solutions!

- ightharpoonup Irregularity ightarrow Train on derivatives!
 - ► Takamichi et al. 2018; Takamichi et al. 2020; Thieling et al. 2021; Thien et al. 2023
- ▶ 2π periodicity \rightarrow **Von-Mises Loss!**

$$\blacktriangleright \quad -\sum_{\omega} \sum_{\tau} \cos(\mathbf{X}[\omega,\tau] - \hat{\mathbf{X}}[\omega,\tau])$$

► Takamichi et al. 2018; Thien et al. 2021

Increased computation in Masuyama et al. 2023

DNN:6 248k params 7.95 GMAC/s

Complex Least-Squares: Solving $z = A^{-1}b$

$$\mathbf{z}_0^{(\natural)} = (\underbrace{\mathbf{\Lambda}_{\tau_0} + \mathbf{D}_{\tau_0} \mathbf{\Gamma}_{\tau_0} \mathbf{D}_{\tau_0}}_{\mathbf{A}})^{-1} \underbrace{\mathbf{\Lambda}_{\tau_0} (\mathbf{Y}[\omega, \tau_{\text{-}1}] \odot \mathfrak{v}_{\tau_0})}_{\mathbf{b}}$$

Solving $\mathbf{z} = \mathbf{A}^{-1}\mathbf{b}$:

- ightharpoonup Memory: $\mathcal{O}(\mathsf{L}^2)$ for STFT window of size $2\mathsf{L}$
- ▶ Naive inversion of **A** is $\mathcal{O}(\mathsf{L}^3)$
- ▶ Iterative solvers: $(\kappa(L+1)^2)$ for κ iterations (Demmel 1997)
- Performed for every frame

Very high quality, but at increased cost

Faster and Smaller First Stage

- ► Cheaper, FFW layers (BN, Conv1x1, LReLU)
- Less residual and gated convs
- Joint FPD and BPD
- ▶ Training: Adam with CosineWR schedule

Faster and smaller:

- ▶ Params: 248k \rightarrow 8.5k (\sim 30 \times)
- ► GMAC/s: $7.95 \rightarrow 0.27$ ($\sim 30 \times$)
- ▶ 2x faster, +1hop latency (★)

Linear-Complexity Second Stage

Recall: solving $\mathbf{z} = \mathbf{A}^{-1}\mathbf{b}$ has complexity $\sim \mathcal{O}(\kappa \cdot \mathsf{L}^2)$:

$$\mathbf{z} = (\underbrace{\mathbf{\Lambda} + \mathbf{D}^{\mathsf{H}} \mathbf{\Gamma} \mathbf{D}}_{\mathbf{A}})^{-1} \underbrace{\mathbf{\Lambda} (\mathbf{Y} \odot \mathbf{v})}_{\mathbf{b}}$$

Observation: A is PSD and tridiagonal!

$$\begin{split} & \textbf{\textit{D}}^H \boldsymbol{\Gamma} \textbf{\textit{D}} = \sum_{l=1}^L \gamma_l (\bar{\boldsymbol{d}}_l \textbf{\textit{e}}_l + \textbf{\textit{e}}_{l+1}) (\boldsymbol{d}_l \textbf{\textit{e}}_l + \textbf{\textit{e}}_{l+1})^T \\ = & \sum_{l=1}^L \gamma_l \big(|\boldsymbol{d}_l|^2 \underbrace{\boldsymbol{e}_l \textbf{\textit{e}}_l^T + \boldsymbol{e}_{l+1} \textbf{\textit{e}}_{l+1}^T}_{\text{diag.}} \big) + \sum_{l=1}^L \gamma_l \boldsymbol{d}_l \underbrace{\boldsymbol{e}_{l+1} \textbf{\textit{e}}_l^T + \sum_{l=1}^L \gamma_l \bar{\boldsymbol{d}}_l}_{\text{subdiag.}} \underbrace{\boldsymbol{e}_l \textbf{\textit{e}}_{l+1}^T}_{\text{superdiag.}} \end{split}$$

Thomas' Algorithm $o \mathcal{O}(L)$ memory and arithmetic!

Retaining High Quality

Intelligibility & Quality

- Inversion of LibriSpeech consistent spectrograms
- Consistently good results on both axes
- Strided version also competitive
- Variation study supports design choices

More results & samples

Thank you!

Conclusion:

- Low latency and high quality from DL + Gradient Theorem
- ► Tiny causal CNN for joint BPD/FPD
 - 2x inference at 1-hop extra latency
- ▶ Linear-complexity LSTSQ phase recovery

Future work:

- Subjective metrics
- Inconsistent/modified spectrograms
- Noisy phase as prior during inference
- ▶ Differentiable second stage
 - $lackbox \Lambda, \Gamma$ as ℓ_2 regularizers for DNN

Jesus M. Alvarez Meta RL (Spain)

Juan Azcarreta Meta RL (UK)

Çağdaş Bilen Meta RL (UK)

References

Beauregard, Gerald T., Mithila Harish, and Lonce Wyse (2015). "Single Pass Spectrogram Inversion". In: IEEE International Conference on Digital Signal Processing (DSP).

Beauregard, Gerald T, Xinglei Zhu, and Lonce Wyse (2005). "An efficient algorithm for real-time spectrogram inversion". In: DAFx.

Demmel, James W. (1997). Applied Numerical Linear Algebra. Society for Industrial and Applied Mathematics.

Griffin, D. and Jae Lim (1983). "Signal estimation from modified short-time Fourier transform". In: ICASSP.

Masuyama, Yoshiki et al. (2023). "Online Phase Reconstruction via DNN-Based Phase Differences Estimation". In: TASLP 31, pp. 163–176. Peer, Tal, Simon Welker, and Timo Gerkmann (2022). "Beyond Griffin-Lim: Improved Iterative Phase Retrieval for Speech". In: 2022 International

Workshop on Acoustic Signal Enhancement (IWAENC), pp. 1-5. DOI: 10.1109/IWAENC53105.2022.9914686.

Portnoff, M. (1979). "Magnitude-phase relationships for short-time Fourier transforms based on Gaussian analysis windows". In: ICASSP. Průša, Zdeněk and Peter L. Søndergaard (2016). "Real-Time Spectrogram Inversion Using Phase Gradient Heap Integration". In: DAFx.

Takamichi, Shinnosuke et al. (2018). "Phase Reconstruction from Amplitude Spectrograms Based on Von-Mises-Distribution Deep Neural Network". In: IWAENC.

 (Apr. 2020). "Phase reconstruction from amplitude spectrograms based on directional-statistics deep neural networks". In: Elsevier Signal Processing 169.C.

Thieling, Lars, Daniel Wilhelm, and Peter Jax (2021). "Recurrent Phase Reconstruction Using Estimated Phase Derivatives from Deep Neural Networks". In: ICASSP.

Thien, Nguyen Binh et al. (2021). "Two-stage phase reconstruction using DNN and von Mises distribution-based maximum likelihood". In: APSIPA ASC.

- (2023). "Inter-Frequency Phase Difference for Phase Reconstruction Using Deep Neural Networks and Maximum Likelihood". In: TASLP 31.

Zhu, Xinglei, Gerald T. Beauregard, and Lonce L. Wyse (2007). "Real-Time Signal Estimation From Modified Short-Time Fourier Transform Magnitude Spectra". In: IEEE Transactions on Audio, Speech, and Language Processing 15.5, pp. 1645–1653. DOI: 10.1109/TASL.2007.899236.

Complex Least-Squares from Masuyama et al. 2023: Details

$$\begin{split} |\mathfrak{u}_{\tau_0}| \coloneqq & \frac{|\boldsymbol{Y}[\omega,\tau_0]|}{|\boldsymbol{Y}[\omega\text{-}1,\tau_0]|}, \quad \operatorname{Arg}(\mathfrak{u}_{\tau_0}) \coloneqq \operatorname{Arg}\left(\frac{\boldsymbol{Y}[\omega,\tau_0]}{\boldsymbol{Y}[\omega\text{-}1,\tau_0]}\right) = & \boldsymbol{u}_{\tau_0} \\ |\mathfrak{v}_{\tau_0}| \coloneqq & \frac{|\boldsymbol{Y}[\omega,\tau_0]|}{|\boldsymbol{Y}[\omega,\tau_1]|}, \quad \operatorname{Arg}(\mathfrak{v}_{\tau_0}) \coloneqq \operatorname{Arg}\left(\frac{\boldsymbol{Y}[\omega,\tau_0]}{\boldsymbol{Y}[\omega,\tau_1]}\right) = & \boldsymbol{v}_{\tau_0} \end{split}$$

Phase addition schematic from Masuyama et al. 2023

These ratios satisfy $Y[\omega, \tau_0] = Y[\omega - 1, \tau_0] \circ \mathfrak{u}_{\tau_0}$ as well as $Y[\omega, \tau_0] = Y[\omega, \tau_{-1}] \circ \mathfrak{v}_{\tau_0}$ (assuming all $Y[\omega, \tau] \neq 0$). This allows us to express $Y[\omega, \tau_0]$ as the optimum of the following quadratic objective [21]:

$$\argmin_{\boldsymbol{z}} \underbrace{ \frac{\|\boldsymbol{z} - (\boldsymbol{Y}[\omega, \tau_{\text{-}1}] \odot \boldsymbol{\mathfrak{v}}_{\tau_0})\|_{\boldsymbol{\Lambda}_{\tau_0}}^2}_{\tau\text{-term}} + \underbrace{\|\boldsymbol{D}_{\tau_0} \boldsymbol{z}\|_{\boldsymbol{\Gamma}_{\tau_0}}^2}_{\omega\text{-term}}$$

where $D_{\tau_0} \in \mathbb{C}^{L \times (L+1)}$ is a matrix with $-\mathfrak{u}_{\tau_0}$ in the main diagonal, ones in the diagonal above, and zeros elsewhere. Here, $\|\boldsymbol{a}\|_{\boldsymbol{X}}^2 := \boldsymbol{a}^H \boldsymbol{X} \boldsymbol{a}$ is a weighted norm with *diagonal nonnegative* matrix \boldsymbol{X} , used in [21] to mitigate errors for small magnitudes. Equation 10 admits the following closed-form solution:

$$\boldsymbol{z}_0^{(\natural)} = (\boldsymbol{\Lambda}_{\tau_0} + \boldsymbol{D}_{\tau_0}^{\mathsf{H}} \boldsymbol{\Gamma}_{\tau_0} \boldsymbol{D}_{\tau_0})^{-1} \boldsymbol{\Lambda}_{\tau_0} (\boldsymbol{Y}[\omega, \tau_{\text{-}1}] \odot \boldsymbol{\mathfrak{v}}_{\tau_0})$$