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Abstract 

We consider an extended formulation approach to the edge-weighted maximal clique problem. The problem is formulated 
by using additional variables for the set of nodes with the natural variables for the set of edges. We show that the proposed 
formulation is superior to the natural formulation both theoretically and practically. By using the projection technique, we 
can also derive new classes of facet-defining inequalities for the lower-dimensional polytope of the natural variables. 
Computational results are reported. 
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1. Introduction 

This paper considers the weighted maximal b- 
clique problem (MCPb), which can be stated as 
follows. Given a complete undirected graph G = 
(V,E) with node weights w i e  ~ ,  i E  V, edge 
weights c e E ~ ,  e ~ E, and an integer b, (MCPb) 
finds a maximum weight clique with at most b 
nodes. The problem can be viewed as a generaliza- 
tion of the well-known maximum clique problem. By 
introducing variables xi, for all i ~ V and Ye, for all 
e ~ E, the problem can be formulated as the follow- 
ing 0-1 integer programming problem. 

max ~ w i x i + ~ ce Ye 
i~V e~E 

s.t. Y'. x,<_b, (1) 
i ~ v  

Abbreviations: Edge-weighted maximal clique problem 
* Corresponding author. 

y i j - x i < O ,  Yij-xj<_O, fo r a l l ( i , j )  E E  (2) 

x i + x j - - y u <  1, for all ( i , j )  E E  (3) 

{0,1} 'v', {0,1} 
Note that in the above formulation, the y variables 
can be treated as being continuous between 0 and 1. 

In this paper, we are mainly interested in the 
special case of (MCPb) without node weights, that 
is, the edge-weighted maximal clique problem. There 
exist many applications of the problem, especially, in 
certain facility location problems, for example, see 
Spiith, 1985, and Ravi et al., 1994. In this case, the 
problem can be formulated only by using the edge 
variables (natural formulation), see Dijkhuizen and 
Faigle, 1993. So the above formulation can be seen 
as an extended formulation of the problem. Though 
the node variables are not necessary in this case, the 
approach using the above formulation has many 
advantages over the natural formulation approach 
and this is the main theme of this paper. 
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Dijkhuizen and Faigle, 1993, considered a strong 
cutting-plane approach to the edge-weighted maxi- 
mal clique problem by using a natural formulation. 
However, they reported very poor performance of 
the proposed approach. In this paper, we present a 
new cutting-plane approach based on the extended 
formulation. 

Suppose the constraint Eq. (1) is ignored, then the 
problem can be viewed as a linearized version of a 
boolean quadratic optimization problem, whose poly- 
hedral structure has been studied by Padberg, 1989, 
and more generally, by Deza and Laurent, 1992a; 
Deza and Laurent, 1992b; De Simone, 1989, and 
Boros and Hammer, 1993. If the constraints Eq. (3) 
can be dropped (for example, when all edge weights 
are nonnegative), the problem reduces to a special 
case of the knapsack quadratic problem, which has 
been studied by Johnson et ai., 1993. Hence we can 
use many known inequalities on those problems to 
devise a strong cutting-plane algorithm for (MCPb). 

If we apply the projection to those inequalities 
onto the lower-dimensional space of the edge vari- 
ables, we can obtain many interesting classes of 
facet-defining inequalities for the polytope associ- 
ated with the natural formulation. Moreover, we 
show that the extended formulation with only one 
class of facet-defining inequalities gives a tighter LP 
relaxation than the natural formulation with several 
classes of facet-defining inequalities proposed by 
Dijkhuizen and Faigle, 1993. 

The extended formulation approach was applied 
successfully to solve many hard integer program- 
ming problems, for example, see Eppen and Martin, 
1987. In addition, the approach (with the projection) 
can be used to characterize the convex hull of certain 
combinatorial optimization problems, for example, 
see Balas and Pulleyblank, 1983. 

Though we are mainly interested in (MCPb) with- 
out node weights in this paper, (MCPb), in itself, is a 
suitable model (or submodel) when we apply the 
column generation approach to certain complex clus- 
tering problems. In fact, the problem appears in a 
clustering problem arising in the broadband network 
design, see Park et al., 1994. 

This paper is structured as follows. In Section 2, 
we review the previous study by Dijkhuizen and 
Faigle, 1993. In Section 3, we propose some classes 
of facet-defining inequalities of the polytope associ- 

ated with the extended formulation. Comparisons of 
the two formulations using the projection technique 
are shown in Section 4. Some new facets of the 
polytope associated with the natural formulation are 
proposed in Section 5. In Section 6, we describe the 
cutting-plane algorithm for (MCPb). Computational 
results are given in Section 7. Finally, in Section 8, 
we give concluding remarks. 

In the remainder of this section, we give some 
notations used in the paper. Let p = IVl and q = IEI 
= p( p - 1)/2. For any nonempty subset of nodes S, 
8(S) denotes the set of edges with exactly one end in 
S. When S is a singleton, we write 8(i) instead of 
8({i}). E(S) is the set of edges with both ends in S. 
For two nonempty disjoint subsets S, T of V, [S: T] 
is the set of edges with one end in S and the other 
end in T. Let ECP b be the convex hull of the feasible 
solutions to the extended formulation. That is, 

ECP b = c o n v { ( x , y )  ~ {0,1}P+ql(x,y) satisfies the 

first three equations}. 

Also let CP b be the convex hull of the feasible 
solutions to the natural formulation, that is, CP b = 
{conv{y ~ {0,1}q}i  Yet = 1 for all e E E(S) A 0 other- 
wise, 
O~S__C_V^ISI<b}. 

Then it is clear that CP o can be obtained by 
projecting ECP b onto the lower dimensional space of 
the edge variables. 

2. Previous study on the polytope C P  b 

In this section, we review the previous study on 
the edge-weighted maximal clique problem. Dijk- 
huizen and Faigle, 1993, studied the polyhedral 
structure of the polytope CP b. In fact, they consid- 
ered only the cliques whose number of nodes is 
greater than 1. But this doesn't alter any of the 
results in this paper and so, we simply ignore it. 
Their results are summarized in the following theo- 
rem. 

Theorem 2.1. The following inequalities are 
facet-defining for CP b when b > 4. 
1. (Triangle Inequalities) For any 3 distinct nodes i, 

j , k ,  

Yik "l- Yjk --  Yi j  < 1. (4) 



K. Park et a l . /  European Journal o f  Operational Research 95 (1996) 671-682 673 

2. (Z-inequalities) For  any  4 dist inct  nodes  i, j ,  I, m, 

Yij + Yjl + Yt,, - Yil - Yj,, < 1. (5) 

3. (W-inequalities) For  any  5 d is t inct  nodes  

i I . . . . .  i 5 , 

E r e -  E Y~ < 1, (6) 
e~ P e~'ff 

where  P =  { ( i l , i 2 ) , ( i s , i 4 ) , ( i 4 , i s ) }  and P =  

{(i l ,i3 ),(i2 ,i 4 ),(i 3 ,i 5 )} . 
4. (S-inequalities) For  any  6 dist inct  nodes i z . . . . .  i6 ,  

E Y~= E Y e  < 1, (7) 
e ~ S  eE S  

where  S = {(i 1 ,i 2 ),(i 2 ,i 3 ),(i 3 ,i 4 ) , ( i  4 ,i 5 ) , ( i  5 ,i 6 )}  
and 7S = {( i I , i)6 ),( i I ,i 3 ),( i 2 ,i 4 ),( i 3 ,i s ),( i 4 ,i 6 )}. 

5. (Partition Inequalities) F o r  any  nonempty  subse t  
S o f  V and a node t, ~ V \ S ,  

E Y i t -  ~-~Ye < 1. (8) 
i~ S e~ E(S) 

The inequalities given in 1, 2, and 3 are special cases 
of the path inequalities, which are defined as follows 
(see Dijkhuizen and Faigle, 1993). Let {i I . . . . .  i s} be 
the set of k distinct nodes and define 

P = {( i, ,i2),( i 2 ,i3) . . . . .  ( i k_  I ,i~)}, 

P =  ( i l , i 3 ) , (  i2 , i4)  . . . . .  ( i k_3 , i  k_ t ) , ( ik -2 , ik) .  

Then the path inequali ty  associated with {i I . . . . .  i k} 
is defined as 

k + 2  
E Y e -  E y e  < - -  

e ~ P  e ~ f f  4 

They proposed a formulation of the problem as 
follows. 

max ~ Cey  e 
e ~ E  

s.t. ~ y ~ < b - l ,  for a l l v ~ V ,  
e~ 8(v) 

Eq. (4), Eq. (5), 

y E {0,1} q . 

Note that the above formulation requires q vari- 
ables with O(p 4) constraints, while the extended 
formulation shown in the previous section, needs 
p + q variables with O(p2) constraints. 

3. Facets of  E CP b 

In this section, we will introduce families of 
facet-defining inequalities for ECP b. It can be easily 
shown that ECP b is full-dimensional if and only if 
b >_ 2. In the following, we assume the condition 
holds. First, we will consider the trivial inequalities 
for ECP b. 

Proposit ion 3,1. Let  p > 3. 

1. For  all  e ~ E, the inequali ty  Ye >~ 0 defines a 

f a c e t  o f  ECP b. 
2. For  any two dis t inct  nodes i,j  ~ V, the inequali- 

ties y~j - xs < 0 and x i + x j  - Y i j  ~-- 1 define facets 
of ECP b if and only if b > 3. 

3. For  any  i ~ V,  nei ther  the inequali ty  x i < 1 nor 

the inequali ty  E ~ e  8(i)Ye ~ b - 1 define a f a c e t  o f  
ECP b. 

4. Nei ther  the inequal i t ies  ~ i  ~ v xi  <- b nor  Y'.~ ~ e Ye 
< b (b  - 1)/2 define f ace t s  o f  ECP b. 

1. 

2. 

. 

Proof. 
For sufficiency proof, see Padberg, 1989. 
For sufficiency proof, see Padberg, 1989. Sup- 
pose b = 2. Then the following three inequalities 
are valid for ECP b. 

E Y e - - X i  ~ 0 ,  ( 9 )  
eE tS(i) 

x i + x~ + x k - Yij - Yik - Yjk < I, (10) 

Yi~ + Yjk - x~ <_ O. ( l l )  

The inequality Y i j -  x i  < 0 is dominated by Eq. 
(9). By adding the inequalities Eq. (10) and Eq. 
(11), we obtain the inequality xi + x~ - Yii < 1. 
Since any facet-defining inequality of the full-di- 
mensional polyhedron is unique up to scalar mul- 
tiplication, this shows the inequality is not facet- 
defining. 
For the inequality x i < 1, see Proposition 1 in 
Padberg, 1989. The inequality Y'-e~ ~(i)Ye < b -  1 
is dominated by the following valid inequality for 
ECP b. 

E Y e < (  b -  1 ) x i .  
eES( i )  
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4. Consider the following valid inequalities for ECP b. 

( b - l )  E x , -  E y e ~ b ( b - 1 ) / 2 ,  (12) 
i~V e~E 

~.~ y e - ( b - 1 ) x , < O ,  f o r a l l i ~ V .  (13) 
e~ 6(i) 

By adding all the inequalities Eq. (12) and Eq. 
(13), we obtain the inequality Y'. ye < b ( b -  

e~E 
1)/2. Also by adding the inequality Eq. (12) 
multiplied by 2 and all of the inequalities in Eq. 
(13) ,wecanobtain ] ~ x  i < b. [] 

i~V 

As noted in the previous section, any valid in- 
equalities of BQP (boolean quadric polytope, the 
polytope associated with the boolean quadratic opti- 
mization problem) is also valid for ECP b. The fol- 
lowing theorem introduces two classes of facet-defi- 
ning inequalities of ECP b which have been proved to 
be facet-defining for BQP by Padberg, 1989. 

Theorem 3.2. 
1. (Clique Inequality) For given Sc_ V with IsI ~ 3 

and an integer a, 1 < cr < I s I -  2, the clique 

inequality 

a E x i -  E Y e < C ~ ( c r + l ) / 2  (14) 
i~S e~E(S) 

defines a facet of  ECPb if and only if  S = V or 
o r < b - 2 .  

2. (Cut Inequality) For any S c V with IsI > 1 and 
T c. T /  S with ITI > 2, the cut inequality 

E Ye-- E r e - -  E r e - - E X i  ~ 0  
e~ [S:T] e~ E(S) eE E(T) i~ S 

(15) 

defines a facet o f  ECP b if  and only i f  either 
I S I = !  a n d b ~ 3 o r  I S { ~ 2 a n d b > - 4 .  

Proof. For sufficiency, see Padberg, 1989. We 
will prove only the necessity part. 
1. Suppose S 4= V and c~ _> b - 1. Then for any t 

V \ S ,  the following inequality is valid for ECP h 
(see Theorem 3.3 2)). 

E Yit -- OtXt ~ O. (16) 
i~S 

. 

Consider the following clique inequality on the 
set of nodes S U {t}, 

Ot E Xi--  E Ye ~ CO(Or -F 1 ) /2 "  
iESU{t} e~E(SU{t}) 

(17) 

Then by adding the inequalities Eq. (16) and Eq. 
(17), we obtain Eq. (14). 
Suppose ISI = 1 and b = 2. The corresponding 
cut inequality Eq. (15) is dominated by the star 
inequality Eq. (13) with i =  s, where S =  {s}. 
Now suppose ISI _> 2 and b < 3. Then it can be 
easily shown the following inequality is valid and 
dominates Eq. (15). 

E re - -  E r e - - E x i  ~ 0 "  [] 
[e~[S:T] eEE(T) i~S 

One may obtain more facet-defining inequalities of 
ECP b by considering those of BQP proposed by 
Deza and Laurent, 1992a, Deza and Laurent, 1992b, 
and Boros and Hammer, 1993. 

As discussed in the previous section, (MCPb) 
without the constraint Eq. (3) reduces to a special 
case of the knapsack quadratic problem (Johnson et 
al., 1993). A class of strong valid inequalities, called 
the tree inequalities, has been proposed for the prob- 
lem by Johnson et al., 1993. They proved that the 
inequality defines a facet of the restricted polytope 
associated with the problem. Hence, it can be lifted 
to define a facet of the whole polytope by using the 
sequential lifting procedure (Nemhauser and Wolsey, 
1988). But they also proved that the associated lift- 
ing problem is NP-hard. However, in the case of the 
current problem, we can show that the tree inequal- 
ity, in itself, defines a facet of the whole polytope 
under a mild condition. 

Theorem 3.3. 
1. (Tree Inequality) Let T be a tree of  G with the set 

o f  nodes V(T), IV(T)I = b + 1, and the set o f  edges 
F(T). Let b >_ 3. Then the inequality 

E Y e -  E ( d i - 1 ) x i  < 0  (18) 
e~F(T) i~V(T) 

where d i is the degree of the node i in T, defines 
a facet of  ECP b i f  and only if  b = p - 1 or T is 
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not a star. 
2. (Star Inequality) For any node r ~ V the inequal- 

ity, 

~., y e - ( b - 1 ) x r < O  (19)  
eEl ( r )  

defines a facet of ECP b if and only if  b < p-1. 

Sketch of the Proof 
1. Suppose b < p - 1 and T is a star with a center 

node r, then the corresponding tree inequality is 
dominated by the star inequality Eq. (19). To 
show sufficiency, suppose b = p -  1 and T is a 
star, then the corresponding tree inequality re- 
duces to the star inequality. Hence we assume 
b < p - 1 and T is not a star. Let us define 

P ( T )  = c o n v { ( x , y )  ~ ecPblx  i = O, 

forall  i ~ V \  V ( T ) ,  

y e = 0 ,  forall  e~e\e(v(r))}. 
Note that P(T)  is obtained from ECP b by fixing 
some variables to 0. Then we can show the tree 
inequality Eq. (18) defines a facet of  P(T)  by the 
same method used in Johnson et al., 1993. So if 
we apply the sequential lifting procedure to the 
inequality, then we can obtain a facet-defining 
inequality for ECP b. In the following, we will 
show that all of  the lifting coefficients result in 0 
if we apply the lifting procedure in a specified 
order. Let the lifting coefficient of  the variable be 
x i, be cti, for i ~ V \ V ( T )  and that of  ye, be 13 e, 
for e E E \ E ( V ( T ) ) .  
When applying the lifting procedure to the in- 
equality Eq. (18), first, we choose the variables 
xi, for i ~ V \  V(T) and, then, y, ,  for e ~ E ( V \  
V(T)). Then it can be easily shown that a,. = 0, 
for i E V \  V(T) and 13 e = 0, for e ~ E ( V \  V(T)). 
Now the remaining variables are y~, for e 
[V(T):V\V(T)] .  Apply the lifting procedure in 
the following order. Then by induction in step k, 
we can show all the lifting coefficients result in 0. 
(Step 0) Set TI = T and k = 1. 
(Step k) I f  T k is empty,  stop. Otherwise, let L k 
be the set of  leaf nodes of  T k. Apply the lifting 
procedure to all of  the variables Ye, for e ~ [L~:V 
\ V ( T ) ]  (in an arbitrary order in this se0. Set 
T k + i = T k - - L k  and k = k + l .  G o t o s t e p  k. 

2. The proof  is simple and so, it is omitted. [] 

If  we use a lifting order different from the one 
used in the above proof, we can obtain a lifted tree 
inequality different from the original one, see Park et 
al., 1994. Johnson et al., 1993, generalized the tree 
inequality into the forest inequality. However,  the 
inequality is of  no interest in this case since the 
underlying graph is complete. 

4. Comparisons of the two formulations 

In this section, we will compare the two formula- 
tions of  the edge-weighted maximal clique problem. 
Throughout this section, we use the projection of  a 
polyhedron into a lower dimensional space. First, we 
will give the necessary notation and definitions. 

Let us define 

Q =  { ( x , y )  ~RP+qIAx + By< b , y ~  ~ } .  

Then the projection of the polyhedron Q into the y 
space, Pry(Q), is defined as 

Pry(Q) = { yERq l (  x , y )  E Q, forsome x E R P } .  

Balas and Pulleyblank, 1983, proved the following 
result. 

Theorem 4.1. Let W = { w ~ R m l w A = O ,  w> 
0}, where m is the number of rows of the matrix A. If 
w 1 . . . . .  W s are the extreme rays of W, then 

Pry(Q)  = { y ~ gq[( wkB ) y < wkb 

forall  k =  1 . . . . .  s ; y ~  ~F}. 

Let Q,,., be the set of  feasible solutions to the 
following system of linear inequalities. 

E Yit -- E Ye -- Xi ~ O, forall S c_ V \  {i} 
t~ S e~ E(S) 

with 1 _< IsI _< m and for all i ~ V. (20) 

E X i  - E y ~ < l ,  f o r a l l S c _ V  
i~S e~E(S) 

with 1 < ISI < n. (21) 

Ye>O, forall  e ~ E. (22) 
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Note that the inequalities Eq. (20) are special cases 
of  the cut inequalities and Eq. (21) are those of  the 
clique inequalities. Let us define P~., = Pry(Qm, .)  
and let 

w,. , .=  +1 
Sc_ V \ { i } , l  <_lSl<m 

- Y'. f , = O , f o r a l l i ~ V } ,  
i~Sc_V, ISI<_n 

where r = p  ~'. (p-m)C k, and s =  Y'. C k. 
k = l  k = l  p 

In the following, we will characterize the set of 
extreme rays of  W,.,.. 

Proposi t ion 4.2. Let (0/,fl) be a ray of W,.,.. 
Then it is an extreme ray if and only if  it is equiva- 
lent to the following form. 

fls = lfor some S ~ V, 1 < Isl _< n, and f r  = 0 

otherwise 

0~is, = lfor some S i c_ V \  { i} ,1 < ISi[ <_ m, 

for all i ~ S, and air = 0 otherwise. 

Proof.  The sufficiency of  the condition can be 
proved easily. We prove only the necessity part. Let 
(0/,13) be an extreme ray of W,,,~. Let us define 
a = ( T C _ V I f T > O }  and W =  U { T C _ V I T ~ A } .  
Then if i ¢~ W, ais = 0 for all S _ V\{ i} , I  < ISI < m. 
Otherwise, if i ~ W, there exists at least one Si such 
that S i __c_ V\{ i} , I  < [S~I < n and a;s ~ > 0. Suppose 
more than one such subset exist. Let two distinct 
such subsets S i and T~ be given. Let us define 

a m + a m = 0 ,  and l __ 
iS i ~ 0~iS i 0~iT i ~ iT i 0 /vT - -  OlvT 

otherwise, 

fir j = / 3  r for a l l T _ V .  

and 

0/2 + 0/2 = 0, and 2 __ 
iT i = 0~iS i 0~iT i , iS i 0 /vT - -  0 /vT 

otherwise 

/3r 2 = f r  for all T__c_ V. 

T h e n  (otl ,[~ l )  and (Ot2,[~ 2)  a r e  two rays of  W,,,. and 
(a,13) can be expressed as a positive combination of  
them, which contradicts the assumption that (ot,[3) is 
an extreme ray. Hence we can assume for each 
i E S, there exists a unique subset S; such that 
S i c V \ { i } ,  1 <_ [Si[ < n and Otis ~ > O. 

Now suppose that [AI > 2. Let us choose a subset 
P ~ A. Let us define 

fit, for all i ~ P and T = S i 

0 otherwise 

f e  if T = P 

0 otherwise 

ai~ = 

and 

air - fp  for all i ~ P and T = S i 

air otherwise 

0 i f  T =  P 

f r  otherwise. 

Then (0/1,pl) and (a2,[3 2) are two nonzero rays of  
Win, n and (0/,[3) an be expressed as a sum of them. 
Hence ]A[ = 1 and this completes the proof. [] 

Therefore, using theorem 4.1, we obtain 

Corol lary  4.3. 

Pm,n 
/ 

Y¢ 
t I i ~ S  t ~ S  i i ~ S  e ~ E ( S i )  

- 

e ~ E ( S )  

< 1, for all S c V , 1  < I sI  _< nand  

S i c  V \ { i } , l <  IS i < m f o r a l l i ~ S .  I 

Now we consider some interesting special cases 
of  the above results. First, consider QL2, which 
consists of  the inequalities Eq. (2) and Eq. (3). Note 
that Qm,2 with the cardinality constraint Eq. (1) gives 
an LP relaxation of  the extended formulation. 

Corol la ry  4.4. P1,2 is the set of  feasible solutions 
to the following system of linear inequalities. 

y¢ > 0, for all e ~ E, 

y ¢ < l ,  forall e ~ E, (23) 

Yik  + Y j k  - -  Ylj < 1, 

for all distinct three nodes i, j ,k  ~ V, (24) 

Yik  + Yjt - -  Y i j  <- 1, 

for all distinct four nodes i , j , k , l  ~ V. (25) 
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The formulation Q 1,2 requires p + q variables with 
O(p2) constraints and the formulation PI,2 requires 
only q variables but O(p4)  constraints. 

Now we consider Q2,2. 

Corollary 4.5. P2.2 is the set o f  feasible solutions 
to the following system o f  linear inequalities. 

Eq. (22), Eq. (23), Eq. (24) and Eq. (25) and 

Yik + YjI + Yjm -- Yij -- Ylm <- l ,  

for all i ~ j ,  14= r e , j 4  = l , j  ~ m , i  ~ k (26) 

Yik + Yil + Yjm + Yj, -- Yij -- Ykt - -  Y,,, < 1, 

for all i ~ j , i  4= k, i  ~ l ,k  -¢ l , j  4= m , j  4= n ,m ~ n. 

(27) 

Note that if k = m in Eq. (26), the inequality 
corresponds to a Z-inequality. Also note that if 1 = m 
in Eq. (27), the inequality is nothing but a W-in- 
equality. The formulation Q2.2 requires p + q vari- 
ables with O(p 3) constraints and the formulation 
P2,2 requires only q variables but O(p6) constraints. 
Hence if Q2,2 with the cardinality constraint is used 
as an LP relaxation, the resulting upper bound will 
be tighter than that obtained using the natural formu- 
lation with all of the triangle, Z- and W-inequalities 
added. 

The results in the above are sufficient to show the 
superiority of the extended formulation approach to 
the natural formulation approach. The extended for- 
mulation with a smaller number of constraints gives 
the same (or even tighter) linear programming relax- 
ation than the natural formulation with a larger num- 
ber of constraints. 

5. New facets of  CP b 

In this section, we propose new classes of facet- 
defining inequalities of the polytope CP b, which are 
obtained or motivated by the projection of the poly- 
tope ECP b (or BQP). First, we consider the inequal- 
ity given in Corollary 4.3. When m = p -  1 and 
n = p, the inequality can be rewritten as follows 

E E -  E E re-- E re N1 ,  (28) 
i~S I~Siyit iES e~E(Si) e~E(S) 

where Q -¢ S c V, 0 4= S~ c V \  {i} for all i E S. 

Let us define the inequality Eq. (28) the sun- 
f lower inequality if the following conditions hold. 
1. 

. 

. 

S~ c_ V \  S f o r a l l i ~ S  

If[S/[ = 1 for some i ~ S,thenS i c_ Sj for all j ~ S 

(29) 

ISi N SjI < 1 forall distinct i , j  ~ S. 

We can show that all of the triangle, Z-, W- and 
partition inequalities are special cases of the sun- 
f lower inequality. The following theorem states that 
the inequality defines a facet of CP b. 

Theorem 5.1. The sunflower inequality defines a 
facet  o f  CP~ when b > 4. 

Proof. See Park et al., 1994. [] 

There exist other conditions under which the in- 
equality Eq. (28) defines a facet of CP h, see Park et 
al., 1994. 

The inequality Eq. (28) does not always define a 
facet of CP b. For example, for a nonempty subset of 
nodes T c V \ S ,  if S i = T for all i ~  S, the corre- 
sponding inequality can be strengthened as follows. 

)--'- Y e -  E Y e  - 2  E Ye < 1  (30) 
e~[S:T] e~E(S) eGE(T) 

Note that if IsI >_ 3, the inequality Eq. (30) domi- 
nates the inequality Eq. (28). Let us call the inequal- 
ity Eq. (30) 2-partition inequality. The following 
theorem states that the inequality is facet-defining 
for CP b. 

Theorem 5.2. The 2-partition inequality Eq. (30) 
defines a facet  o f  CP b when b > 4. 

Proof. See Park et al., 1994. [] 

Finally, we mention that there may exist many 
other facets of CP b that can be obtained by project- 
ing down the inequalities of BQP. We think that this 
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is particularly true if we consider the facets of BQP 
given in Deza and Laurent, 1992a; Deza and Lau- 
rent, 1992b) and others. 

6. Cutting-plane algorithm 

the cut inequality Eq. (15) with Isl = 1 and ITI = 2 is 
called the triangle cut inequality. The following 
classes of inequalities are used as cutting-planes. 
1. TS: = class of triangle clique inequalities, 
2. TC: = class of triangle cut inequalities, 
3. TR: = class of tree inequalities. 

Now we will describe the cutting-plane algorithm 
for (MCPb) which uses the results in the previous 
sections. The algorithm is composed of two parts. In 
the first part, we solve the linear programming relax- 
ation of the problem with the addition of the 
cutting-planes until we cannot find any more 
cutting-planes violated by the current solution. In the 
second part, if the final solution is not integral, we 
go into the branch-and-bound phase with the final 
formulation. Next, we will explain some details of 
the algorithm. 

6.1. Initial formulation and cutting-planes 

As an initial LP relaxation of (MCPb), we will 
use the following formulation. 

(P1) max )-". wig i -~- E CeYe 
iEV e ~ E  

s.t. Yij - xi < 0, y;j - x i ,~ 0, for all ( i , j )  ~ E 

x i + x j - Y i j <  l ,  f o r a l l ( i , j ) ~ E  

~_, y - ( b - 1 ) x i < O ,  f o r a l l i ~ V  (31) 
eES(i)  

a E x  i -  Y'. y ~ < o t ( a + l ) / 2  
i~V  eEE 

for all ct = 1 . . . . .  p - 2 (32) 

Ye > 0, for all e ~ E. 

The inequalities Eq. (31) are the star inequalities 
and Eq. (32) are the clique inequalities defined on 
the set of nodes V. All of the inequalities used in 
(P1) are facet-defining for ECP b under suitable con- 
ditions. Note that the above formulation gives a 
tighter LP relaxation than the formulation shown in 
Section 1. The number of constraints used in (P1) is 
O(p2). 

To cut off the fractional solutions that may occur, 
we will use several classes of cutting-planes. First 
we define the clique inequality Eq. (14) with IsI = 3 
and et = 1 as the triangle clique inequality. Similarly 

6.2. Separation algorithms 

Now, we will describe the separation algorithms 
for the classes of cutting-planes given in the previous 
subsection. First, the separation problems for the 
inequalities in the classes TS and TC can be solved 
in O(P  3) by simple comparisons. More specifically, 
for a given fractional solution (x  *, y *) we generate 
MAXT number of most violated inequalities from 
each class, where MAXT is a prespecified number. 

Now we consider the separation problem for the 
tree inequalities. First, suppose that a subset of nodes 
S with IS[ = b + 1 is given. Then we can show that 
the most violated tree inequality with V(T) = S can 
be found by solving a minimum spanning tree prob- 
lem on the complete graph on the set of nodes S. 

Proposition 6.1. For a given subset of nodes S 
with [SI = b + 1, the most violated tree inequality 
with V(T)= S can be found by solving a minimum 
spanning tree problem on the complete graph on the 
set of nodes S. 

Proof. Let H = (S,F)  be a complete graph on the 
set of nodes S. For each edge (i,j) ~ F, let us define 
the edge weight wij = xi* + x f  - Y i j .  Note that w e 
0, for all e ~ F. Let T be an arbitrary spanning tree 
in the graph H. Let us define w(T) = Y'. w e and 

e ~ E(T) 

a(T)=  ~-, Ye - Y'. ( d i - 1 ) x / * ,  where d i is the 
eEE(T) iES 

degree of the node i in the tree T, for all i ~ S. Then 
it can be easily shown - w ( T ) = a ( T ) -  ~ x ~ .  

i~S  
Hence the most violated tree inequality, which corre- 
sponds to the spanning tree that maximizes a(T), can 
be found by solving the minimum spanning tree 
problem on the graph H with edge weights w. [] 

Hence if V(T) is fixed, we can easily find the 
most violated tree inequality. However, the general 
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separation problem for the tree inequality seems to 
be very hard. We could not prove the NP-hardness 
for the separation problem. We can show that the 
problem can be formulated as a weighted k-cardinai- 
ity tree problem (Fischetti et al., 1994) by using a 
similar transformation used in the above proposition. 
But the weighted k-cardinality clique problem is 
NP-hard (Fischetti et al., 1994). 

We use a two phase method to find the violated 
tree inequality. The first phase is a greedy procedure 
to determine the set of nodes V ( T )  with IV(T)I  = b 

+ 1 and the second is the minimum spanning tree 
problem as explained above. 

6.3. B r a n c h - a n d - b o u n d  p h a s e  

It can be easily shown that a given solution 
( x * , y * )  is integral if and only if x* is integral. 
Hence, before going to the branch-and-bound phase, 
only p node variables are set to be binary. 

7. Computational results 

To investigate the empirical performance of the 
extended formulation approach, we test the algorithm 
on instances generated randomly under the same 

setting used in Dijkhuizen and Faigle, 1993. We test 
the algorithm in two cases. In the first case, we 
generate the edge weights c e in the range 

0<ce_<  1000. 

In the second case, they are generated in the range 

-- 500  ~ C e ~ 500 .  

Dijkhuizen and Faigle, 1993 also tested their algo- 
rithm on the classical max-clique problem. However, 
we think that other approaches, for example, a cut- 
ting-plane algorithm for the node packing problem 
(Sigismondi, 1989), are more suitable in this case. 
So the case is not considered here. 

For comparison with the Dijkhuizen and Faigle's 
approach, we also implemented their cutting-plane 
algorithm. In this case, we don't include the branch- 
and-bound phase since there are some difficulties in 
applying the off-the-shelf branch-and-bound proce- 
dure (the number of Z-inequalities is too large). For 
implementation details, see Dijkhuizen and Faigle, 
1993. 

For an LP solver and branch-and-bound routine, 
we use the CPLEX 3.0 callable mixed integer li- 
brary. All tests are performed on a S U N /4  compati- 
ble workstation (25 MHz, 15.8 MIPs). 

Table 1 
Computational results for problems with nonnegative weights 

p b # SOL # CUT 

# TS # TC # TR 

# LP LGAP IGAP TIME 
(%) (%) (sex) 

10 3 10 54 98 17 
6 10 8 32 0 
9 10 0 0 0 

15 4 10 286 620 60 
8 10 360 360 15 
12 10 0 0 0 

20 5 9 652 2404 194 
10 10 1530 1530 80 
15 10 83 90 0 

25 5 7 448 4238 432 
10 10 2952 3400 37 
15 10 2025 2164 60 
20 10 19 62 15 

30 7 8 968 7912 552 
14 8 581 937 125 
21 10 2133 2903 252 
28 10 0 0 0 

17 2.3 0.0 5 
11 0.4 0.0 10 
10 0.0 0.0 8 
41 5.5 0.04 8 
28 5.6 0.0 89 
10 0.0 0.06 4 
95 9.9 0.0 392 
61 13.7 0.0 448 
13 0.2 0.0 192 
105 8.5 0.3 969 
78 17.0 0.0 1471 
54 6.1 0.0 1296 
13 0.1 0.0 485 
172 I 1.8 0.1 7362 
230 21.0 0.3 9354 
66 2.3 0.0 2258 
I 0 0.0 0.0 252 



680 K. Park et al. / European Journal of Operational Research 95 (1996) 671-682 

7.1. Results with nonnegative weights 

We generate 10 instances for each size (p,b) of 
the problem. Table 1 shows the computational results 
for the problems with nonnegative weights. 

In the table, the headings # TS, # TC, and # TR 
represent the total numbers of the triangle clique 
inequalities, the triangle cut inequalities, and the tree 
inequalities generated over the 10 instances, respec- 
tively. The heading # SOL refers to the number of 
problems solved without invoking the branch-and- 
bound routine. The heading # LP refers to the total 
number of calls to LP solver. LGAP (IGAP, resp.) 
represents the (average) relative ratio between the 
objective value obtained by the first LP formulation 
(final LP formulations, resp.) and that of the integer 
optimum. Precisely, they are defined as follows. 

LGAP(%) = (Initial LP - I P ) / I P  X 100, 

IGAP(%) = (Final Lp - I P ) / I P  × 100. 

The heading Time refers to the total CPU time 
needed to solve all 10 instances for each size. 

Among 170 instances tested, only 10 instances 
need the branch-and-bound phase. However, even in 
this case, the number of branch-and-bound nodes 
generated does not exceed 4. When b is close to p, 
in most cases, we can obtain integer solutions only 

by solving the initial formulation (P1). Especially, 
when p = 1 0 ,  b = 9 ,  p = 1 5 ,  b = 1 2 ,  and p = 3 0 ,  
b = 12, integral solution is obtained by the initial 
formulation, for all of the instances tested. Hence the 
proposed initial formulation gives a very tight LP 
relaxation in this case. 

The results show that (MCPb) becomes more 
difficult to solve when b is close to half of p. In this 
case, more cuts are generated and more time is 
needed to solve the problem. Also, in this case, 
LGAP is large. 

7.2. Results with positive and negative weights 

Table 2 shows the computational results for the 
problems with both positive and negative weights. 

Similarly to the first case, only 10 instances need 
the branch-and-bound phase. Also in this case, at 
most 3 branch-and-bound nodes are generated, Note 
that LGAP is very significant compared to the first 
case. The initial formulation gives a very poor LP 
relaxation in this case, but the addition of cutting- 
planes results in integral solutions in most instances 
tested. In contrast to the first case, the problem with 
b very close to p is also difficult to solve in this 
case. This result seems to come from the fact that 
when the edge weights can have negative values, the 

Table 2 
Computational results for problems with positive and negative weights 

p b # SOL # CUT 

# TS # TC # TR 

# LP LGAP IGAP TIME 
(%) (%) (sec) 

10 3 10 20 80 4 
6 10 89 140 18 
9 10 122 260 10 

15 4 10 249 400 40 
8 10 549 600 45 
12 10 518 790 39 

20 5 10 586 1964 172 
10 10 1693 1920 50 
15 10 1531 2062 288 

25 5 6 425 4618 431 
10 9 3342 4163 82 
15 9 3196 4064 255 
20 10 2935 3850 424 

30 7 6 1223 9025 634 
14 10 5355 6000 93 
21 10 5256 6800 321 
28 10 4468 830 452 

15 2.8 0.0 5 
17 12.5 0.0 10 
22 24.7 0.0 12 
30 48.5 0.0 36 
40 46.2 0.0 76 
50 48.9 0.0 60 
78 24.2 0.0 264 
74 67.4 0.0 506 
80 74.6 0.0 413 
108 22.6 0.2 918 
91 62.6 0.0 3169 
94 85.8 0.1 1932 
87 77.1 0.0 3747 
203 37.5 0.8 4411 
130 97.4 0.0 4840 
1 46 99.9 0.0 4287 
136 119.4 0.0 9248 
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cardinality constraint becomes very loose if b is 
sufficiently large compared to p. 

7.3. Results on the Sp~th's data 

Sp~ith, 1985, considered the following facility lo- 
cation problem. Given a complete graph G = (V,E) 
with nonnegative edge weights d e, e ~ E, find a 
clique on b nodes with the minimum edge weight. 
Let M be a strict upper bound on the edge weights 
d e. Then by setting w e = M - d e for all e ~ E, the 
problem can be modeled as an edge-weighted maxi- 
mal clique problem. 

Sp~ith, 1985, gives a set of  data for p = 25 (and 
M = 1000). We tested our algorithm on the data and 
the results are shown in Table 3. 

All of  the instances are solved optimally approxi- 
mately within 3 minutes. Among 23 instances, 4 
instances (b = 4,5,7,8) need the branch-and-bound 
phase. Also in this case, at most 3 branch-and-bound 
nodes are generated. Dijkhuizen and Faigle, 1993, 
also tested their algorithm on the same data and they 
concluded the pure cutting-plane approach is not 

Table 4 
Computational results of D&F's algorithm ( p  = 10) 

b Nonnegative Positive and nonnegative 

# SOL Time(sec) # SOL Time(sec) 

3 7 373 4 380 
6 8 318 7 228 
9 8 95 8 317 

advisable. However, by using the extended formula- 
tion, we can solve the problems very efficiently. 

7.4. Comparison with the Dijkhuizen and Faigle's 
algorithm 

Table 4 shows the computational results obtained 
by applying the algorithm of Dijkhuizen and Faigle, 
1993, on the same instances of  size p = 10 which 
were used to test our algorithm. Those instances 
were solved by our algorithm within 2 seconds. 

Among 60 instances tested, 18 instances are not 
solved by their algorithm. In addition, the CPU time 
is very significant since the separation routines need 

Table 3 
Computational results on the Sp~ith's data ( p  = 25) 

b # CUT # LP 

#TS #TC #TR 

LGAP IGAP Optimal Time 
(%) (%) value (sec) 

3 9 30 0 4 
4 10 50 0 6 
5 22 80 7 9 
6 74 230 13 24 
7 107 280 10 15 
8 40 60 5 4 
9 240 240 5 13 
10 260 260 4 14 
11 180 180 7 10 
12 220 220 5 12 
13 160 160 5 9 
14 140 140 4 8 
15 140 140 5 8 
16 100 100 3 6 
17 40 40 4 3 
18 20 20 0 2 
19 0 0 0 1 
20 0 0 0 I 
21 0 0 0 1 
22 0 0 0 1 
23 0 0 0 1 

1.5 0.0 2853 23.1 
2.6 0.6 5471 46.5 
3.6 4.24 8478 89.5 
8.5 0.0 12325 113.1 
10.0 0.3 16559 145.2 
12.5 0.7 21025 198.3 
13.3 0.0 26235 160.0 
15.2 0.0 31508 197.4 
14.7 0.0 37834 137.2 
14.8 0.0 44320 158.3 
12.1 0.0 51089 127.6 
8.6 0.0 57818 130.1 
5.7 0.0 65110 110.2 
3.2 0.0 73038 81.8 
1.2 0.0 81660 49.7 
0.1 0.0 90563 35.9 
0.0 0.0 99767 24.4 
0.0 0.0 109244 17.2 
0.0 0.0 118167 18.1 
0.0 0.0 127852 16.3 
0.0 0.0 138097 11.4 
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much time. We have also tested their algorithm on 
the problem instances of p = 15. But the algorithm 
shows very poor performance, as observed by them 
(Dijkhuizen and Faigle, 1993). Moreover, the time to 
complete the addition of cutting-planes is very large, 
and in some cases, it even exceeds 1 hour. 

8. Concluding remarks 

In this paper, we proposed an extended formula- 
tion approach to the edge-weighted maximal clique 
problem. The proposed formulation has only Iv I 
additional variables with [El natural variables. As 
contrasted with the previous study by Dijkhuizen and 
Faigle, 1993, the approach with strong cutting-planes 
can solve instances of moderate size very efficiently. 

By using the projection technique, we also com- 
pared two formulations and proposed new facet-defi- 
ning inequalities for the polytope defined by natural 
variables. We show that the extended formulation 
with a few number of constraints gives a tighter LP 
relaxation than the natural formulation with a much 
larger number of constraints. 

We think that the approach using an extended 
formulation combined with strong cutting-planes can 
be used as an efficient solution method for other 
combinatorial optimization problems, especially, 
when the pure cutting-plane approach gives a very 
poor performance. 
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